BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA -1000

DEPARTMENT OF CIVIL ENGINEERING

Committed to Quality Assurance for Better Bangladesh

APPROVED RATES FOR TESTING OF MATERIALS AND SERVICES

Effective from 16th August, 2021 Rates include VAT (15%), University Overhead (30%) & Laboratory Development and Maintenance Department of Civil Engineering reserves the right to change the rates at any time without any prior notice

Contact person: Prof. Dr. A. B. M. Badruzzaman; Room No 415; Mobile: 01819 557964

PABX Nos.: 55167100, 55167228-57, Ext. 7226; Fax - 9665639; Web: ce.buet.ac.bd

BRTC Office Time : Sat to Wed => 9:00 am - 5:00 pm & Thu => 9:00 am - 2:00 pm

SI. No.	Name of Tests	Test Rate (Tk.)	SI. No	Name of Tests	Test Rate (Tk.)
	Aggregates (Sample Preparation Charge Tk. 2000 per Sa	, ,		Bitumen (Sample Preparation Charge Tk. 3000 per S	
1	Sieve analysis (CA) / Gradation /FM (CA)	6,800	1	Specific gravity (Sp.Gr.)/ Density	5,200
2	Sieve analysis (CA) / Gradation (Base/subbase)	10,600	2	Penetration / Grading	5,200
3	Sieve analysis / Gradation / FM (CA) (Ballast)	8,700	3	Naphta Xylene Equivalent	22,200
4	Sieve analysis / Gradation / FM (CA) (Ballast)/Specified Sieve size	11,500	4	Flash & Fire Points	5,200
5	Sieve analysis (FA) / FM	3,800	5	Solubility (300/- for Chem.)	5,000
6	% finer than # 200 sieve / Fine content/Silt content	3,800	6	Ductility (300/- for Chem.)	5,000
7	Aggregate Crushing Value(ACV) / Compressive Strength	7,700	7	Softening Point (R&B) (300/- for Chem.)	5,000
8	Aggregate Impact Value (AIV)	5,700	8	Thin Film Oven (TFO) / Loss-on-Heating (LOH)	6,400
9	Ten Percent Fine Value (TFV)	11,500	9	Float Test	5,200
10	Angularity number including specific gravity (Sp.Gr.)	9,600	10	Foaming Test	5,200
11	Elongation Index (EI) / Shape Test	8,700	11	Spot Test	5,200
12	Flakiness Index (FI)	8,000	12	Viscosity (Dynamic)	19,200
13	L.A. Abrasion of CA	7,700	13	Ash Content / Inorganic Matter	9,600
14	L.A. Abrasion of Ballast	8,000		Any test on residue from LOH/TFOT (if TFOT/LOH included separately)	9,600
15	Unit weight of aggregate (CA)	5,000	15	Any test on residue from LOH/TFOT (if TFOT/LOH not included separately)	16,100
16	Unit weight of aggregate (FA)	4,500	1/	Any test on residue fromThin Film Oven test	15,400
17	Soundness with Na ₂ SO4 (4000/- for chemical)	19,200	16	Coating & Stripping test with/without Anti-Stripping Agent/Dose	7,300
18	Soundness with Mg ₂ SO4 (6000/- for chemical)	19,200	17	Asphalt Concrete Mix Design (Marshall)*	81,500
19	Absorption and Specific Gravity / Density	6,800	18	Particle Charge Test of Bitumen Emulsion	6,100
20	Clay lumps & friable particles	5,700			
21	Moisture Content	2,900		Asphalt or Bituminous Material / Pavement Co	ore
22	Percentage of Uncrushed Particle (Fractured face)	8,700		(Sample Preparation Charge Tk.3000 per Sampl	e)
23	Mica Content of Coarse Sand / CA by visual observation	16,600	19	Bitumen content (4000/- for Chemical)	15,400
24	Effect of organic impurities (1300/- for chem)	19,200	20	Bitumen Gradation (If Bitumen Content is included)	10,600
25	Organic impurities/Salt content / Sulphate content / Salinity (Checmical 500)	4,500	21	Bitumen Gradation ONLY	26,000
	Bulking of sand	5500/15000	22	Water Content	11,500
27	Void Ratio / Porosity / Moh. Hardness	7,700	23	Theoretical Maximum Specific Gravity	7,700
28	CBR of Base or Sub-base material	59,800	24	Density	3,800
29	Standard Proctor test of aggregate (MDD)	24,100	25	Marshall Stability and Flow Test	6,800
30	Modified Proctor or Vibrating Hammer	39,500	26	In-situ core cutting (per sample)	11500+Field Visit
	Potential Alkali-Silica Reactivity of Aggregates (Chemical Method) C289	25,000	27		131,000
	Potential Alkali Reactivity of Aggregates (Mortar-Bar Method) C1260	36,000	28	TSR (Tensile Strength Ratio) Test	81,500

	Bricks (Bricks needed for ASTM = 5 Nos., BS = 10 Nos.)						
1	1 Absorption (ASTM / BS Standard)						
2	Crushing strength(ASTM / BS Stand; 300/400/- capping mat.)	4,800 / 7,900					
3	Size & shape (ASTM / BS Standard)	3,100 / 3,100					
4	Unit Weight (ASTM / BS Standard); 200/300 for S.P.C.	4,300 /5,700					
5	Efflorescence (needed 10 additional bricks)	4,800					

	R.C.C Pipes					
1	Pipes (dia up to 600mm)	7,200				
2	Pipes (dia above 600mm and up to 900mm)	7,900				
3	Pipes (dia above 900mm and up to 1200mm)	10,200				
4	Pipes (dia above 1200mm and up to 1524mm)	13,000				
5	In-situ pipe testing	8,700 + *				
	Manhole Covers +					
1	Load & wt. test on manhole covers (<18 inch or 450 mm Dia)	7,900				
2	Load & wt. test on manhole covers (>18 inch or 450 mm Dia)	8,700				
	Miscellaneous					
1	Initial Rate of Absorption/Suction for Brick	3,400				
	Note: + Pipe specimens & manhole covers have to be taken away by the Client, immediately after the test is performed.					

	Hollow / Special Brick Block / Kerb (Set of 3 Nos.)					
1	Comp. strength of Hollow bricks, Paving / Concrete blocks (with core cutting)	7,000				
2	Compressive strength of Road Kerb Stone	4,400				
3	Absorption	2,400				
4	Unit weight	4,300				
5	Comp. strength of Hollow bricks, Paving block incl. unit wt.	6,100				

Notes: [* Field visit fee; Inside Dhaka City = Tk. 15,000; Outside Dhaka City (No overnight stay) = Tk. 25,000; Near Districts = Tk. 38,000 without overnight stay and Tk. 30,000 per day for overnight stay; Farthest Districts = Tk. 50,000 without overnight stay and Tk. 40,000 per day for overnight stay, Remote Areas with overnight stay = Tk. 45,000 per day] [* & Transport, local hospitalities, accommodation (in case of overnight stay) etc. are to be provided by the Client] S.P.C. = Sample Preparation Charge. For one trial only using client's supplied sample. However, if design is to be performed by BRTC, BUET item at least 3 trial cost should be borne by the client.

Page 3 of 6

Cement Concrete 1 Concrete cylinders (100x200mm), for a set of 3 Nos. 2 2 Concrete cylinders (150x300mm), for a set of 3 Nos. 3 3 Cubes (< 200mm) , for a set of 3 Nos. 3 4 Cubes (< 200mm), ach core cutting & testing (300/- for fuel) 5 5 Cubes (< 300mm), each core cutting & testing (300/- for fuel) 5 6 Concrete Spun, for a set of 3 Nos. 3 7 Concrete beam in flexure, for a set of 3 Nos. 5 8 Concrete slab in flexure, for a set of 3 Nos. 6 10 Concrete mix design without admixture (22,000+44,000) [up to 25 MPa] 77 11 Concrete mix design without admixture (24,000+48,000) [up to 25 MPa] 77 12 Concrete mix design without admixture (24,000+48,000) [up to 25 MPa] 77 12 Concrete mix design without admixture (24,000+48,000) [up to 25 MPa] 77 12 Concrete mix design without admixture (24,000+48,000) [up to 25 MPa] 77 13 In-Situ cer cutting & testing per sample (with outs canning) (S.P.C. 200/-) 6,41 14 In-Situ Paramer Test - per spot / location (min. for 3 tests) 6,11	Rate (.)
1 Concrete cylinders (150x300mm), for a set of 3 Nos. 2 2 Concrete cylinders (150x300mm), for a set of 3 Nos. 3 3 Cubes (< 200mm), for a set of 3 Nos. 3 4 Cubes (< 200mm), for a set of 3 Nos. 3 5 Cubes (< 300mm), each core cutting & testing (300/- for fuel)) 5 6 Concrete span, for a set of 3 Nos. 3 7 Concrete beam in flexure, for a set of 3 Nos. 3 8 Concrete slab in flexure, for a set of 3 Nos. 3 9 Concrete mix design without admixture (24,000+48,000) [up to 25 MPa] 72 10 Concrete mix design without admixture (24,000+48,000) [up to 25 MPa] 72 11 Concrete mix design without admixture (24,000+48,000) [up to 25 MPa] 72 12 Concrete mix design without admixture (24,000+48,000) [up to 25 MPa] 72 11 Concrete mix design without admixture (24,000+48,000) [up to 25 MPa] 72 12 Concrete mix design without admixture (24,000+48,000) [up to 25 MPa] 72 11 In-Stu design using admixture (24,000+48,000) [up to 25 MPa] 72 11 In-Stu Visor Pin Test - per spot / lo	.)
3 Cubes (< 200mm), for a set of 3 Nos.	2,200
4 Cubes (200mm - 300mm), for a set of 3 Nos. 4 5 Cubes (>300mm), each core cutting & testing (300/- for fuel) 5 6 Concrete Spun, for a set of 3 Nos. 5 7 Concrete beam in flexure, for a set of 3 Nos. 6 8 Concrete slab in flexure, for a set of 3 Nos. 7 9 Concrete mix design without admixture (24,000+48,000) [up to 25 MPa] 6 10 Concrete mix design without admixture (24,000+48,000) [up to 25 MPa] 7/2 12 Concrete mix design without admixture (24,000+48,000) [up to 25 MPa] 7/2 12 Concrete mix design using admixture (24,000+48,000) [up to 25 MPa] 7/2 12 Concrete mix design without admixture (24,000+48,000) [up to 25 MPa] 7/2 12 Concrete mix design without admixture (24,000+48,000) [up to 25 MPa] 7/2 12 Concrete mix design per sample (without scanning) (S.P.C. 200/-) 6,44 14 In-Situ Core cutting & testing per sample (without scanning) (S.P.C. 200/-) 13,31 15 In-Situ Winsor Pin Test - per spot / location (min. 3 tests) 6,17 16 In-Lab Biock/Ket ore cutting & testing per sample (S.P.C. 300/-) 12	3,900
5 Cubes (>300mm), each core cutting & testing (300/- for fuel)	3,400
6 Concrete Spun, for a set of 3 Nos. 2 7 Concrete beam in flexure, for a set of 3 Nos. 2 8 Concrete slab in flexure, for a set of 3 Nos. 11 Concrete Mix Designs 9 Concrete mix design without admixture (22,000+48,000) [up to 25 MPa] 77 10 Concrete mix design without admixture (24,000+48,000) [up to 25 MPa] 77 11 Concrete mix design using admixture (24,000+48,000) [up to 25 MPa] 77 12 Concrete mix design using admixture (24,000+48,000) [vp to 25 MPa] 77 12 Concrete mix design using admixture (24,000+48,000) [vp to 25 MPa] 77 12 Concrete mix design using admixture (24,000+48,000) [vp to 25 MPa] 77 12 Concrete mix design using admixture (24,000+48,000) [vp to 25 MPa] 77 12 Concrete mix design using admixture (24,000+48,000) [vp to 25 MPa] 77 13 In-Situ Canuting & testing per sample (with quick scanning) (S.P.C. 400/-) 13,33 11 In-Situ Scanning (quick & Image) per spot / location (min. for 3 tests) 6,71 16 In-Situ Scanning (quick & Image) per spot / location (min. for 3 tests) 12,00 18	4,000
7 Concrete beam in flexure, for a set of 3 Nos. 6 8 Concrete slab in flexure, for a set of 3 Nos. 11 Concrete Mix Designs 9 Concrete mix design without admixture (24,000+44,000) [up to 25 MPa] 66 10 Concrete mix design without admixture (24,000+44,000) [up to 25 MPa] 72 11 Concrete mix design without admixture (24,000+48,000) [vp to 25 MPa] 72 12 Concrete mix design without admixture (24,000+48,000) [vp to 25 MPa] 72 12 Concrete mix design without admixture (24,000+48,000) [vp to 25 MPa] 72 12 Concrete mix design without admixture (24,000+48,000) [vp to 25 MPa] 72 12 Concrete mix design without admixture (24,000+48,000) [vp to 25 MPa] 72 13 In-Situ Core cutting & testing per sample (with out scanning) (S.P.C. 400/) 13,31 14 In-Situ Vinsor Pin Test - per spot / location (min. 3 tests) 6,11 17 In-Situ Scanning (quick & Image) per sample (S.P.C. 300/) 72 18 In-Lab Block/Kerb core cutting & testing per sample (S.P.C. 300/) 72 19 In-Lab Supplied Core Testing (Por Core) (SPC 300/) 73 20	7,100
8 Concrete slab in flexure, for a set of 3 Nos. 11 Concrete Mix Designs 9 Concrete mix design without admixture (22,000+44,000) [up to 25 MPa] 66 10 Concrete mix design using admixture (24,000+48,000) [up to 25 MPa] 72 11 Concrete mix design using admixture (24,000+48,000) [up to 25 MPa] 72 12 Concrete mix design using admixture (26,500+53,500) [> 25 MPa] 80 Destructive and NDT Tests 13 In-Situ core cutting & testing per sample (with quick scanning) (S.P.C. 200/-) 6,44 14 In-Situ Winsor Pin Test - per spot / location (min. 7 a 1ests) 6,71 15 In-Situ Winsor Pin Test - per spot / location (min. 7 a 1ests) 6,71 16 In-Situ Scanning (quick & Image) per sample (S.P.C. 300/-) 72 18 In-Lab Block/Kerb core cutting & testing per sample (S.P.C. 300/-) 72 19 In-Lab Supplied Core Testing (per core) (SPC 300/-) 72 10 Pressure gauge / Dial Gauge 6 2 Calibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Calibration 66 4 Deflection dial 72 <	3,400
Concrete Mix Designs 9 Concrete mix design without admixture (22,000+44,000) [up to 25 MPa] 66 10 Concrete mix design without admixture (24,000+48,000) [up to 25 MPa] 72 11 Concrete mix design without admixture (24,000+48,000) [>25 MPa] 72 12 Concrete mix design using admixture (26,500+53,500) [>25 MPa] 86 Destructive and NDT Tests 13 In-Situ core cutting & testing per sample (with quick scanning) (S.P.C. 200/.) 6,44 14 In-Situ Winsor Pin Test - per spot / location (min. 3 tests) 6,71 16 In-Situ Winsor Pin Test - per spot / location (min. for 3 tests) 6,11 17 In-Situ Scanning (quick & Image) per spot / location (for 2 scans) 12,00 18 In-Lab Block/Kerb core cutting & testing per sample (S.P.C. 300/.) 72 19 In-Lab Supplied Core Testing (per core) (SPC 300/.) 72 10 Pressure gauge / Dial Gauge 5 2 Catibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Catibration 66 4 Deflection dial 5 5 5 Proving ring (< 500 kN)	8,400
9 Concrete mix design without admixture (22,000+44,000) [up to 25 MPa] 66 10 Concrete mix design using admixture (24,000+48,000) [up to 25 MPa] 77 11 Concrete mix design using admixture (24,000+48,000) [s25 MPa] 77 12 Concrete mix design using admixture (26,500+53,500) [s25 MPa] 86 Destructive and NDT Tests 13 In-Situ core cutting & testing per sample (with quick scanning) (S.P.C. 400/) 13,31 15 In-Situ Hammer Test - per spot / location (min. 3 tests) 6,71 16 In-Situ Vinsor Pin Test - per spot / location (min. for 3 tests) 6,11 17 In-Situ Scanning (quick & Image) per spot / location (for 2 scans) 12,00 18 In-Lab Block/Kerb core cutting & testing per sample (S.P.C. 300/) 77 19 In-Lab Supplied Core Testing (per core) (SPC 300/-) 72 2 Calibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Calibration 36 3 Calibration of Hydraulic Jack (up tp 1000 ton) with Pressure Gauge Calibration 66 4 Deflection dial 75 77 5 Proving ring (< 100 kN to 500 kN)	1,700
10 Concrete mix design using admixture (24,000+48,000) [up to 25 MPa] 77 11 Concrete mix design without admixture (24,000+48,000) [>25 MPa] 77 12 Concrete mix design using admixture (26,500+53,500) [> 25 MPa] 77 13 In-Situ core cutting & testing per sample (without scanning) (S.P.C. 200/-) 64,44 14 In-Situ core cutting & testing per sample (without scanning) (S.P.C. 200/-) 67,44 15 In-Situ Hammer Test - per spot / location (min. 3 tests) 67,47 16 In-Situ Winsor Pin Test - per spot / location (min. for 3 tests) 67,47 17 In-Situ Scanning (quick & Image) per spot / location (min. for 3 tests) 67,47 18 In-Lab Block/Kerb core cutting & testing per sample (S.P.C. 300/-) 72 19 In-Lab Supplied Core Testing (per core) (SPC 300/-) 72 2 Calibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Calibration 66 3 Calibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Calibration 67 4 Deflection dial 72 73 5 Proving ring (100 kN to 500 kN) 74 6 Proving ring (> 500 kN) 67<	200
1 Concrete mix design without admixture (24,000+48,000) [>25 MPa] 72 12 Concrete mix design using admixture (26,500+53,500) [> 25 MPa] 80 Destructive and NDT Tests 13 In-Situ core cutting & testing per sample (without scanning) (S.P.C. 200/.) 6,44 14 In-Situ core cutting & testing per sample (without scanning) (S.P.C. 400/.) 13,33 15 In-Situ Hammer Test - per spot / location (min. for 3 tests) 6,74 16 In-Situ Scanning (quick & Image) per spot / location (min. for 3 tests) 6,14 17 In-Situ Scanning (quick & Image) per spot / location (min. for 3 tests) 6,14 18 In-Lab Block/Kerb core cutting & testing per sample (S.P.C. 300/.) 72 19 In-Lab Supplied Core Testing (per core) (SPC 300/.) 72 2 Calibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Calibration 66 3 Calibration of Hydraulic Jack (up tp 1000 ton) with Pressure Gauge Calibration 66 4 Deflection dial 52 72 5 Proving ring (100 kN to 500 kN) 72 6 Proving ring (> 500 kN) 62 8 Dynamometer 9 10 Calibrat	6,000
12 Concrete mix design using admixture (26,500+53,500) [> 25 MPa] 88 Destructive and NDT Tests 13 In-Situ core cutting & testing per sample (without scanning) (S.P.C. 400/) 13,33 14 In-Situ core cutting & testing per sample (with quick scanning) (S.P.C. 400/) 13,33 15 In-Situ Hammer Test - per spot / location (min. 3 tests) 6,71 16 In-Situ Scanning (quick & Image) per spot / location (for 2 scans) 12,00 17 In-Situ Scanning (quick & Image) per spot / location (for 2 scans) 12,00 18 In-Lab Block/Kerb core cutting & testing per sample (S.P.C. 300/-) 2 19 In-Lab Supplied Core Testing (per core) (SPC 300/-) 2 10 In-Situ Scanning (quick & Image) per spot / location (for 2 scans) 3 11 In-Sub Supplied Core Testing (per core) (SPC 300/-) 2 12 Calibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Calibration 36 33 Calibration of Hydraulic Jack (up tp 1000 ton) with Pressure Gauge Calibration 6 4 Deflection dial 2 3 5 Proving ring (< 100 kN 10 500 kN)	2,000
Destructive and NDT Tests 13 In-Situ core cutting & testing per sample (with quick scanning) (S.P.C. 200/-) 6,44 14 In-Situ core cutting & testing per sample (with quick scanning) (S.P.C. 400/-) 13,33 15 In-Situ Uammer Test - per spot / location (min. 3 tests) 6,14 16 In-Situ Winsor Pin Test - per spot / location (min. for 3 tests) 6,14 17 In-Situ Scanning (quick & Image) per spot / location (for 2 scans) 12,00 18 In-Lab Block/Kerb core cutting & testing per sample (S.P.C. 300/-) 7 19 In-Lab Supplied Core Testing (per core) (SPC 300/-) 7 19 In-Lab Supplied Core Testing (per core) (SPC 300/-) 7 19 In-Lab Supplied Core Testing (per core) (SPC 300/-) 7 2 Calibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Calibration 36 3 Calibration of Hydraulic Jack (up tp 1000 ton) with Pressure Gauge Calibration 65 4 Deflection dial 7 7 5 Proving ring (< 100 kN to 500 kN)	2,000
13 In-Situ core cutting & testing per sample (with quick scanning) (S.P.C. 200/-) 6,44 14 In-Situ core cutting & testing per sample (with quick scanning) (S.P.C. 400/-) 13,33 15 In-Situ Hammer Test - per spot / location (min. 3 tests) 6,74 16 In-Situ Winsor Pin Test - per spot / location (min. for 3 tests) 6,14 17 In-Situ Scanning (quick & Image) per spot / location (for 2 scans) 12,00 18 In-Lab Block/Kerb core cutting & testing per sample (S.P.C. 300/-) 7 19 In-Lab Supplied Core Testing (per core) (SPC 300/-) 7 10 Pressure gauge / Dial Gauge 5 2 Calibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Calibration 36 3 Calibration of Hydraulic Jack (up tp 1000 ton) with Pressure Gauge Calibration 66 4 Deflection dial 7 7 5 Proving ring (100 kN to 500 kN) 7 7 7 Proving ring (500 kN) 6 7 8 Dynamometer 10 11 9 Compression / TensionTesting Machine (with one dial) 17 17 10 Calibration of Concrete Mix Batching Plant 3,17	80,000
14 In-Situ core cutting & testing per sample (with quick scanning) (S.P.C. 400/-) 13,3 15 In-Situ Hammer Test - per spot / location (min. 3 tests) 6,70 16 In-Situ Winsor Pin Test - per spot / location (min. 6 a tests) 12,00 17 In-Situ Scanning (quick & Image) per spot / location (for 2 scans) 12,00 18 In-Lab Block/Kerb core cutting & testing per sample (S.P.C. 300/-) 2 19 In-Lab Supplied Core Testing (per core) (SPC 300/-) 2 2 Calibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Calibration 36 3 Calibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Calibration 66 4 Deflection dial 2 2 5 Proving ring (<100 kN)	
15 In-Situ Hammer Test - per spot / location (min. 3 tests) 6,70 16 In-Situ Winsor Pin Test - per spot / location (min. for 3 tests) 12,00 17 In-Situ Scanning (quick & Image) per spot / location (for 2 scans) 12,00 18 In-Lab Block/Kerb core cutting & testing per sample (S.P.C. 300/-) 2 19 In-Lab Supplied Core Testing (per core) (SPC 300/-) 2 2 Calibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Calibration 38 3 Calibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Calibration 66 4 Deflection dial 2 5 Proving ring (< 100 kN)	+*
16 In-Situ Winsor Pin Test - per spot / location (min. for 3 tests) 6,10 17 In-Situ Scanning (quick & Image) per spot / location (for 2 scans) 12,00 18 In-Lab Block/Kerb core cutting & testing per sample (S.P.C. 300/-) 2 19 In-Lab Block/Kerb core cutting & testing per sample (S.P.C. 300/-) 2 19 In-Lab Supplied Core Testing (per core) (SPC 300/-) 2 2 Calibration 3 1 Pressure gauge / Dial Gauge 5 2 Calibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Calibration 6 3 Calibration of Hydraulic Jack (up tp 1000 ton) with Pressure Gauge Calibration 6 4 Deflection dial 2 2 5 Proving ring (< 100 kN)	800 +*
17 In-Situ Scanning (quick & Image) per spot / location (for 2 scans) 12,00 18 In-Lab Block/Kerb core cutting & testing per sample (S.P.C. 300/-) 2 19 In-Lab Supplied Core Testing (per core) (SPC 300/-) 2 1 Pressure gauge / Dial Gauge 5 2 Calibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Calibration 38 3 Calibration of Hydraulic Jack (up tp 1000 ton) with Pressure Gauge Calibration 66 4 Deflection dial 2 5 Proving ring (< 100 kN)	700 +*
18 In-Lab Block/Kerb core cutting & testing per sample (S.P.C. 300/-) 19 In-Lab Supplied Core Testing (per core) (SPC 300/-) 2 Calibration 1 Pressure gauge / Dial Gauge 2 Calibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Calibration 33 Calibration of Hydraulic Jack (up tp 1000 ton) with Pressure Gauge Calibration 4 Deflection dial 5 Proving ring (< 100 kN)	100 +*
19 In-Lab Supplied Core Testing (per core) (SPC 300/-) 2 Calibration 1 Pressure gauge / Dial Gauge 5 2 Calibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Calibration 36 3 Calibration of Hydraulic Jack (up tp 1000 ton) with Pressure Gauge Calibration 66 4 Deflection dial 5 5 Proving ring (< 100 kN))00 +*
Calibration 1 Pressure gauge / Dial Gauge 5 2 Calibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Calibration 36 3 Calibration of Hydraulic Jack (up tp 1000 ton) with Pressure Gauge Calibration 66 4 Deflection dial 5 5 Proving ring (< 100 kN)	7,000
1 Pressure gauge / Dial Gauge 5 2 Calibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Calibration 36 3 Calibration of Hydraulic Jack (up tp 1000 ton) with Pressure Gauge Calibration 66 4 Deflection dial 5 5 Proving ring (< 100 kN)	2,700
2 Calibration of Hydraulic Jack (up tp 300 ton) with Pressure Gauge Calibration 38 3 Calibration of Hydraulic Jack (up tp 1000 ton) with Pressure Gauge Calibration 65 4 Deflection dial 5 5 Proving ring (< 100 kN)	
3 Calibration of Hydraulic Jack (up tp 1000 ton) with Pressure Gauge Calibration 65 4 Deflection dial 3 5 Proving ring (< 100 kN)	5,400
4 Deflection dial 3 5 Proving ring (< 100 kN)	8,500
5 Proving ring (< 100 kN to 500 kN)	5,400
6 Proving ring (100 kN to 500 kN) 7 7 Proving ring (> 500 kN) 8 8 Dynamometer 10 9 Compression / TensionTesting Machine (with one dial) 17 10 Calibration of Concrete Mix Batching Plant 3,17 10 Calibration of Concrete Mix Batching Plant 3,17 11 Electronic Balance up to 20kg / Platform Scale / Balance 9 12 CA measuring potable fara / Measuring cub 5 13 Schmidt Hammer (Rebound) 12 14 Weight < 2kg / Load Cell (Weight Box 17800)	3,700
7 Proving ring (> 500 kN) 8 8 Dynamometer 10 9 Compression / TensionTesting Machine (with one dial) 17 10 Calibration of Concrete Mix Batching Plant 3,17 10 Calibration of Concrete Mix Batching Plant 3,17 11 Electronic Balance up to 20kg / Platform Scale / Balance 9 12 CA measuring potable fara / Measuring cub 5 13 Schmidt Hammer (Rebound) 11 14 Weight < 2kg / Load Cell (Weight Box 17800)	6,000
8 Dynamometer 10 9 Compression / TensionTesting Machine (with one dial) 17 10 Calibration of Concrete Mix Batching Plant 3,17 11 Electronic Balance up to 20kg / Platform Scale / Balance 9 12 CA measuring potable fara / Measuring cub 5 13 Schmidt Hammer (Rebound) 12 14 Weight < 2kg / Load Cell (Weight Box 17800)	7,000
9 Compression / TensionTesting Machine (with one dial) 17 10 Calibration of Concrete Mix Batching Plant 3,17 11 Electronic Balance up to 20kg / Platform Scale / Balance 9 12 CA measuring potable fara / Measuring cub 5 13 Schmidt Hammer (Rebound) 12 14 Weight < 2kg / Load Cell (Weight Box 17800)	8,500
10 Calibration of Concrete Mix Batching Plant 3,17 10 Calibration of Concrete Mix Batching Plant 3,17 11 Electronic Balance up to 20kg / Platform Scale / Balance 9 12 CA measuring potable fara / Measuring cub 12 13 Schmidt Hammer (Rebound) 12 14 Weight < 2kg / Load Cell (Weight Box 17800)	0,700
Balance and Weight 11 Electronic Balance up to 20kg / Platform Scale / Balance 9 12 CA measuring potable fara / Measuring cub 9 13 Schmidt Hammer (Rebound) 12 14 Weight < 2kg / Load Cell (Weight Box 17800)	7,500
11 Electronic Balance up to 20kg / Platform Scale / Balance 9 12 CA measuring potable fara / Measuring cub 9 13 Schmidt Hammer (Rebound) 12 14 Weight < 2kg / Load Cell (Weight Box 17800)	7,000
11 Electronic Balance up to 20kg / Platform Scale / Balance 9 12 CA measuring potable fara / Measuring cub 9 13 Schmidt Hammer (Rebound) 12 14 Weight < 2kg / Load Cell (Weight Box 17800)	
12 CA measuring potable fara / Measuring cub 5 13 Schmidt Hammer (Rebound) 12 14 Weight < 2kg / Load Cell (Weight Box 17800)	9,700
13 Schmidt Hammer (Rebound) 12 14 Weight < 2kg / Load Cell (Weight Box 17800)	5,000
14 Weight < 2kg / Load Cell (Weight Box 17800)	2,700
15 Balance up to 300kg 14 16 Balance above 300kg to 1000kg 18 17 Balance above 1000kg 28 Cement Testing Apparatus 18 Mixture Machine (Mortar cube & setting) 9 19 Blaine Apparatus /Jolting table / Vibrating Machine 15 20 Vicat Apparatus 7 21 Cement Autoclave Machine 9 22 Cylinder/Cube Mould Calibration 2 23 Curing Tank 6 24 PH Meter / Stop watch 2 Survey Equipment	9,700
16 Balance above 300kg to 1000kg 18 17 Balance above 1000kg 28 Cement Testing Apparatus 18 Mixture Machine (Mortar cube & setting) 9 19 Blaine Apparatus /Jolting table / Vibrating Machine 15 20 Vicat Apparatus 7 21 Cement Autoclave Machine 9 22 Cylinder/Cube Mould Calibration 22 23 Curing Tank 6 24 PH Meter / Stop watch 22 Survey Equipment	4,400
17 Balance above 1000kg 28 Cement Testing Apparatus 18 Mixture Machine (Mortar cube & setting) 9 19 Blaine Apparatus /Jolting table / Vibrating Machine 15 20 Vicat Apparatus 7 21 Cement Autoclave Machine 9 22 Cylinder/Cube Mould Calibration 7 23 Curing Tank 6 24 PH Meter / Stop watch 2 Survey Equipment	8,700
Cement Testing Apparatus 18 Mixture Machine (Mortar cube & setting) 9 19 Blaine Apparatus /Jolting table / Vibrating Machine 15 20 Vicat Apparatus 7 21 Cement Autoclave Machine 9 22 Cylinder/Cube Mould Calibration 2 23 Curing Tank 6 24 PH Meter / Stop watch 2 Survey Equipment	8,800
18 Mixture Machine (Mortar cube & setting) 9 19 Blaine Apparatus / Jolting table / Vibrating Machine 15 20 Vicat Apparatus 7 21 Cement Autoclave Machine 9 22 Cylinder/Cube Mould Calibration 22 23 Curing Tank 6 24 PH Meter / Stop watch 22 Survey Equipment	
20 Vicat Apparatus 7 21 Cement Autoclave Machine 9 22 Cylinder/Cube Mould Calibration 2 23 Curing Tank 6 24 PH Meter / Stop watch 2 Survey Equipment	9,700
21 Cement Autoclave Machine 9 22 Cylinder/Cube Mould Calibration 2 23 Curing Tank 6 24 PH Meter / Stop watch 2 Survey Equipment	5,000
22 Cylinder/Cube Mould Calibration 22 23 Curing Tank 66 24 PH Meter / Stop watch 22 Survey Equipment	7,600
23 Curing Tank 6 24 PH Meter / Stop watch 2 Survey Equipment	9,700
24 PH Meter / Stop watch 22 Survey Equipment	2,900
Survey Equipment	6,100
	2,400
2E L Boodoitto	- 200
	5,700 2,100
	3,100
Miscellaneous Equipment / Devices	0,100

SI.	Name of Tests	Test Rate
No.		(Tk.)
	Cement (ASTM / AASHTO Standard)	
1	Compressive strength, 3, 7 & 28 days (1000/- Ottowa Sand) (S.P.C. 1,000/-)	10,200
2	Setting time	4,300
3	Fineness	3,100
4	Setting time (only)	4,800
5	Normal Consistency (only)	2,900
6	Density / Sp.Gr.	4,300
7	Weight of cement bag	800
4	Cement (EN Standard)	00.400
1	Compressive Strength, 2 & 28 days (Ottowa Sand: 600/-)	29,400
2	Compressive Strength 2, 7 & 28 days (Ottowa Sand: 800/-)	37,200
	A. Rod (Set of 3 Nos.)	
1	Tension test including wt. & elongation (up to 25mm)	2,500
2	Tension test incl. wt. & elongation (above 25mm & up to 32mm)	3,700
3	Tension test inc. wt. & elongation (above 32 mm & up to 50 mm) (S.P.C. 4,500/-)	9,000
4	Tension test inc. wt. & elongation (above 50 mm) (S.P.C. 6,000/-)	10,800
5	Bend test (up to 25mm)	1,200
6	Bend test (above 25mm)	1,300
7	Re-bend test (up to 25mm)	1,700
8	Re-bend test (above 25mm)	1,900
9	Deformation Measurement	3,000
10	Elongation at 5D as per ISO 6935-2 per Set	2,000
11	Stress-strain Curves (mod.of elasticity)(for Strand : 9,600/-)	10,000
12	Shear Test for Rod (S.P.C. as per rod dia 1200/ 2,000/-)	2,500+
13	Shaft Rod < 30 mm	3,500
14	Shaft Rod > 30 mm <50 mm (S.P.C. 3500/-)	7,500
15	Shaft Rod > 50 mm. (S.P.C. 4000/-)	8,500
16	H.T. Wire, Tension test	8,000
17	Strand / Cable Tension test	14,400
18	Welded MS Bar Tension Test (as per MS Bar Rate x 2 times)	
19	Coupler up to 32mm, for a set of 1 No.	2,600
20	Coupler above 32mm, for a set of 1 No.	3,200
	B. Bolt, Angle and Plate (Set of 3 Nos.)	
21	Anchor Bolt/ Hooks Tension test (up to 25 mm) (S.P.C. 1000/-) (if required)	5,100
22	Anchor Bolt/ Hooks Tension test (above 25 mm) (S.P.C. 1000/-) (if required)	6,200
23	Bolt Tension Test (up to 25mm)	3,500
24	Bolt Tension Test (above 25mm) (S.P.C. 1000/-)	6,000
25	Anchor Bolt/Bolt/Hooks Shear Test (up to 25mm) (S.P.C. 1000/-)	3,600
26	Anchor Bolt/Bolt/Hooks Shear Test (above 25mm) (S.P.C. 2,000/-)	5500
27	Angle/Plate/Sheet Pile/Joist Tension test (up to 16mm) (S.P.C. 1,500/-)	4,600
28	Angle/Plate/Sheet Pile/Joist Tension test (above 16mm up to 30mm) (S.P.C. 2,000/-)	5,600
29 30	Angle/Plate/Sheet Pile/Joist Tension test (above 30mm) (S.P.C. 2,500/-) Sheet Pile/ loist wt, per meter & Thickness (S.P.C. 1,000/-)	6,100 3,000
30 31	Sheet Pile/Joist wt. per meter & Thickness (S.P.C. 1,000/-) Sheet Pile/Joist Section Modulus/Moment of Inertia (S.P.C. 2,000/-)	17,700
32	Hardness test (Rockwell) (S.P.C. 1,000/-)	4,000
33	Impact test, for a set of 3 Nos. (S.P.C. 1,000/-)	4,000
55	C. Rod (Miscellaneous)	т,000
34	Scaffolding / Steel Props / Jog (for a set of 1 No.)	13,000
35	Steel Sleeper (for a set of 1 No.) (S.P.C. 800/-)	6,500
36	Transverse Breaking Load of Rail (for a set of 1 No.)	24,100
37	Fibre Glass Stainers / Pipes Tension test (for a set of 3 Nos.)	4,800
38	Fibre Glass Compression test (for a set of 1 No.)	2,200
39	Spring test (for a set of 1 No.)	3,300
40	Aluminium Column Compression test (S.P.C. 2,000/-)	10,500

	Miscellaneous Equipment / Devices		40	Aluminium Column Compression test (S.P.C. 2,000/-)	10,500
28	Vernear Scale/ Micro meter	2,200	41	Dog Spike	7,800
29	Steel Scale	2,200	42	Bond/Weld Test or Rod Lapping Test	5,500
30	Thermometer	3,400	43	MS Box Welding Compressive Strength (S.P.C. 3,000/-)	10,500
31	Sieve	3,700	44	Butt Welded Joint	7,200
32	Tacheometer	15,700	45	Prestressing 12 Wire Anchorage Test (46,000+69,000)	1,15,000
	Outside Laboratory / In-situ Calibration			Prestressing 19 Wire Anchorage Test (50,000+77,000)	127,000
33	Compression / TensionTesting Machine (with one dial)	17,500 +*		(for Retest of Prestressing Wire Anchorage, test fee will be one third)	
34	Protable Weighing Bridge	16,500	47	Test on Admixture (Mineral) for Cement/Concrete	Consult with teacher

Notes: [* Field visit fee; Inside Dhaka City = Tk. 15,000; Outside Dhaka City (No overnight stay) = Tk. 25,000; Near Districts = Tk. 38,000 without overnight stay and Tk. 30,000 per day for overnight stay; Farthest Districts = Tk. 50,000 without overnight stay and Tk. 40,000 per day for overnight stay, Remote Areas with overnight stay = Tk. 45,000 per day] [* & Transport, local hospitalities, accommodation (in case of overnight stay) etc. are to be provided by the Client] S.P.C. = Sample Preparation Charge. For one trial only using client's supplied sample. However, if design is to be performed by BRTC, BUET item at least 3 trial cost should be borne by the client.

Page 4 of 6

	Timber Test Timber Compression Test,for 1 sample (S.P.C. 1,000/-)	8,800	SI. No.	Name of Soil Tests	Test Rate (Tk.)
	Timber Flexure Test, for 1 sample (S.P.C. 1,500/-)	19,700		Physical and Index Properties	
	Moisture Content, for 1 sample (S.P.C. 1,000/-)	2,900	1	Specific gravity (Sp. Gr.)	2,3
	Hardness, for 1 sample (S.P.C. 1,000/-)	9,900		Unit weight (wet & dry)	2,2
	Density (S.P.C. 300/-)	2,200		Void ratio (Sp. Gr. & Unit Weight.)	3,6
		2,200		Moisture content	1,1
				Linear shrinkage	
	Tiles (Set of 5 Nos.)			Skrinkage limit	
1		2 200	7	· · · · · · · · · · · · · · · · · · ·	
	Size & shape	2,200		Liquid limit and Plastic limit	
	Absorption (with flexural needs additional 5 Nos.)	3,100	-	Liquid limit and Plastic limit of Bentonite	
3	Flexural / Modulus of Rupture	2,900		Grain size analysis by wash sieving/ % finer than # 200 sieve	3,80
				Hydrometer and wash sieving (including specific gravity)	7,0
			11	Organic matter content by Loss on Ignition Test	4,5
	Rubber / Plastic / PVC Materials		12	Sand equivalent test	4,8
1	Tension, for a set of 5 samples	3,500		Compaction and Density Tests	
	Hardness, for 1 sample	2,200	13	Maximum and Minimum density of cohesionless soil	9,0
	Flexural, for a set of 5 samples	4,100		Standard Proctor Compaction test	
3					
4	Compression, for 1 sample	4,100	15	Modified Proctor Compaction test	20,00
	Compression stiffness, for 1 sample	5,700		Permeability and Seepage Characteristics	
6	Water Stopper - Tension, Dim., Elongation (S.P.C. 1000/-)	6,500	16	Permeability of cohesive soil by 1-dimensional consolidation	24,00
7	Water Stopper - Sp. Gr. / Hardness	5,100	17	Permeability of cohesionless soil including Sp.Gr. (Falling Head Method)	11,8
S	Soil Boring (Including relevant tests and Geotechnical Investigat	ion Report)			
	Per Borehole			Consolidation and Swelling Characteristics	
		20 000	10	· · · · · · · · · · · · · · · · · · ·	210
					-
		135,000			13,0
	Outside Dhaka City: Consult with Teacher		21	Swelling Potential	10,0
	· · · · · · · · · · · · · · · · · · ·			Strength and Deformation Characteristics	$ \begin{array}{c} 2,3\\ 2,3,4\\ 2,3,4\\ 2,3,4\\ 3,6\\ 2,7,6\\ 3,6\\ 3,6\\ 3,6\\ 3,6\\ 3,6\\ 3,6\\ 3,6\\ 3$
(No	tes: Minimum 3 borings for a particular site:		22		10,0
Outside Dhaka City: Consult with Teacher 21 Swelling Potential (Notes: Minimum 3 borings for a particular site; Guidelines : up to 3 katha - 3 Nos.; 3 - 5 katha - 5 Nos.; 6 - 10 katha - 8 Nos.) 22 Unconfined compression test (including Sp. Gr.) 23 Laboratory California Bearing Ratio (CBR) of soils Direct Shear Tests Consolidated Drained test for sand (including Sp.Gr.) Consolidated Drained test for clay (including Sp.Gr.) Strength and Deformation Characterist Outside density test per spot (In addition Proctor/max-min density and sieve/Hydrometer tests are needed to be done - please consult wth respective Teacher), Minimum total fees: within Dhaka City Tk. 1,00,000/- ; Outside Dhaka City Tk. 1,40,000/-; Near Districts 2,00,000/- and 8,000 + * 8,000 + * 26 Consolidated Drained compression test with pore pressure (including Sp.Gr.) 24 Consolidated Drained compression test w					
Gui	uennes . up to 5 katria - 5 Nos., 5 - 5 katria - 5 Nos., 6 - 10 kat	ia - 0 105.)	23		50,0
	Field density test per spot (In addition Proctor/max-min		25	Consolidated Drained test for clay (including Sp.Gr.)	17,0
	density and sieve/Hydrometer tests are needed to be			Triaxial Shear Tests	
	done - please consult wth respective Teacher). Minimum		26	Consolidated Drained compression (including Sp.Gr.)	52,0
		8,000 + *			
	-				
	Farthest Districts 2,50,000/-			Uncon. undrained compression test without pore press (including Sp. Gr.)	
			30	Con. undrained extension test without pore pressure (including Sp. Gr.)	46,00
	Non-repetitive Plate Load Test per Location, Minimum total		31	Cyclic Triaxial Test (including Sp. Gr.)	400,00
	fees: within Dhaka City Tk. 1,75,000/-; Outside Dhaka City	07.000 *		Geotechnical Tests (Field)	
34	2,15,000 ; Near Districts, Tk. 2,75,000/- and Farthest	97,000 + *		Filed CBR per Location with field density (in addition	
	Districts Tk. 3,25,000/-			Proctor/max-min density and sieve/Hydrometer tests are needed	
	Districts 17. 5,25,000				
NI - 1	. If find that is to be conclusted in a matrice d/an airline		32	to be done - please consult wth respective Teacher), Minimum	40.000 -
	e: If field test is to be conducted in a restricted/specialized	area, then		total fees: within Dhaka City Tk. 1,50,000/-; Outside Dhaka City	
the	testing fee will be at least 1.5 times the speciified fees.			1,85,000; Near Districts Tk. 2,50,000/- and Farthest Districts Tk.	
				3,00,000/-	
	GEOTEX	TILES / GEOE	BAGS	(Set of 3 samples)	
1	Thickness (10 specimens)	1,400	-	Vertical Permeability under 2 kN/m ² and 200 kN/m ² Pressure	0.4
	Unit Weight / Mass per Unit Area (3 specimens)	2,300	10	Vertical Permeability under 2 kN/m ² Pressure	5,8
	Apparent/Effective Opening Size (AOS/EOS)/Pore Size	4,800	11	Water Permeability by Permittivity/Velocity Index	4,8
5	(3 specimens)	+,000			4,0
5	Strip/Wide-Width Tensile strength & elong) (5 specimens x 2-dir)	5,800	12	Vertical Permeability under head loss of 50 mm	4.8
3			12	·	4.0
3	Grab Tensile Strength & Elongation (5 specimens x 2-dir)	4 800		Horizontal Permeability Under 2kN/m ² Pressure (S.D.C. 500/)	
3 4 5	Grab Tensile Strength & Elongation (5 specimens x 2-dir)	4,800	13	Horizontal Permeability Under 2kN/m ² Pressure (S.P.C. 500/-)	10,5
3 4 5 6	Trapezoidal Tear Strength	4,800	13 14	Index Puncture Resistance or CBR Puncture (10 specimens)	10,5 3,6
3 4 5 6			13 14		10,5
3 4 5 6 7	Trapezoidal Tear Strength Seam Strength (6 specimens)	4,800 4,800	13 14	Index Puncture Resistance or CBR Puncture (10 specimens)	10,5 3,6
3 4 5 6 7	Trapezoidal Tear Strength Seam Strength (6 specimens) Burst Strength	4,800	13 14	Index Puncture Resistance or CBR Puncture (10 specimens) Cone Penetration	10,5 3,6
3 4 5 6 7 8	Trapezoidal Tear Strength Seam Strength (6 specimens) Burst Strength ELASTOMERIC BEARING PAD	4,800 4,800	13 14	Index Puncture Resistance or CBR Puncture (10 specimens)	10,5 3,6
3 4 5 6 7 8	Trapezoidal Tear Strength Seam Strength (6 specimens) Burst Strength	4,800 4,800	13 14 15	Index Puncture Resistance or CBR Puncture (10 specimens) Cone Penetration	10,5 3,6
3 4 5 6 7 8 1	Trapezoidal Tear Strength Seam Strength (6 specimens) Burst Strength ELASTOMERIC BEARING PAD Rubber Bearing Pad - Checking the dimensional variations - ASTM D4014; Clause 7 Rubber Bearing Pad - Bearing compression test for compression	4,800 4,800 3,600	13 14 15 1	Index Puncture Resistance or CBR Puncture (10 specimens) Cone Penetration EPOXY COATED REBAR	10,5 3,6 3,6
3 4 5 6 7 8 1 2(a)	Trapezoidal Tear Strength Seam Strength (6 specimens) Burst Strength ELASTOMERIC BEARING PAD Rubber Bearing Pad - Checking the dimensional variations - ASTM D4014; Clause 7 Rubber Bearing Pad - Bearing compression test for compression stiffness - ASTM D4014; Clause 9	4,800 4,800 3,600	13 14 15 1	Index Puncture Resistance or CBR Puncture (10 specimens) Cone Penetration EPOXY COATED REBAR Holiday Test (3 specimens, each 4m length)	10,5 3,6 3,6
3 4 5 6 7 8 1 2(a)	Trapezoidal Tear Strength Seam Strength (6 specimens) Burst Strength ELASTOMERIC BEARING PAD Rubber Bearing Pad - Checking the dimensional variations - ASTM D4014; Clause 7 Rubber Bearing Pad - Bearing compression test for compression	4,800 4,800 3,600	13 14 15 1 1 2	Index Puncture Resistance or CBR Puncture (10 specimens) Cone Penetration EPOXY COATED REBAR Holiday Test (3 specimens, each 4m length)	10,5 3,6 3,6 1,1
3 4 5 6 7 8 1 2(a) 2(b)	Trapezoidal Tear Strength Seam Strength (6 specimens) Burst Strength ELASTOMERIC BEARING PAD Rubber Bearing Pad - Checking the dimensional variations - ASTM D4014; Clause 7 Rubber Bearing Pad - Bearing compression test for compression stiffness - ASTM D4014; Clause 9 Rubber Bearing Pad - Short-term Compression Proof Load Test to 150% of design load and visual inspection under load using video	4,800 4,800 3,600 5,500	13 14 15 1 2 3	Index Puncture Resistance or CBR Puncture (10 specimens) Cone Penetration EPOXY COATED REBAR Holiday Test (3 specimens, each 4m length) Thickness Measurement Test (3 specimens, each 4m length)	10,5 3,6 3,6 1,5 2,0
3 4 5 6 7 8 1 2(a) 2(b)	Trapezoidal Tear Strength Seam Strength (6 specimens) Burst Strength ELASTOMERIC BEARING PAD Rubber Bearing Pad - Checking the dimensional variations - ASTM D4014; Clause 7 Rubber Bearing Pad - Bearing compression test for compression stiffness - ASTM D4014; Clause 9 Rubber Bearing Pad - Short-term Compression Proof Load Test to 150% of design load and visual inspection under load using video extensometer -AASHTO 2002, 17th Edition, Clause 18.7.2.5, 18.7.4.5.6 Rubber Bearing Pad - Long-term Compression Proof Load Test to 150% of design load and visual inspection under load using video extensometer -AASHTO 2002, 17th Edition, Clause 18.7.2.6, 18.7.4.5.7	4,800 4,800 3,600 5,500 109,250	13 14 15 1 2 3	Index Puncture Resistance or CBR Puncture (10 specimens) Cone Penetration EPOXY COATED REBAR Holiday Test (3 specimens, each 4m length) Thickness Measurement Test (3 specimens, each 4m length) Bend (Flexibility Test) (3 specimens, each 4m length)	10,5 3,6 3,6 1,5
3 4 5 6 7 8 1 2(a) 2(b) 2(c) 3	Trapezoidal Tear Strength Seam Strength (6 specimens) Burst Strength ELASTOMERIC BEARING PAD Rubber Bearing Pad - Checking the dimensional variations - ASTM D4014; Clause 7 Rubber Bearing Pad - Bearing compression test for compression stiffness - ASTM D4014; Clause 9 Rubber Bearing Pad - Short-term Compression Proof Load Test to 150% of design load and visual inspection under load using video extensometer -AASHTO 2002, 17th Edition, Clause 18.7.2.5, 18.7.4.5.6 Rubber Bearing Pad - Long-term Compression Proof Load Test to 150% of design load and visual inspection under load using video	4,800 4,800 3,600 5,500	13 14 15 1 2 3	Index Puncture Resistance or CBR Puncture (10 specimens) Cone Penetration EPOXY COATED REBAR Holiday Test (3 specimens, each 4m length) Thickness Measurement Test (3 specimens, each 4m length) Bend (Flexibility Test) (3 specimens, each 4m length)	10,5 3,6 3,6 1,7 2,7

Notes: [* Field visit fee; Inside Dhaka City = Tk. 15,000; Outside Dhaka City (No overnight stay) = Tk. 25,000; Near Districts = Tk. 38,000 without overnight stay and Tk. 30,000 per day for overnight stay; Farthest Districts = Tk. 50,000 without overnight stay and Tk. 40,000 per day for overnight stay, Remote Areas with overnight stay = Tk. 45,000 per day] [* & Transport, local hospitalities, accommodation (in case of overnight stay) etc. are to be provided by the Client] S.P.C. = Sample Preparation Charge. For one trial only using client's supplied sample. However, if design is to be performed by BRTC, BUET item at least 3 trial cost should be borne by the client.

SI.		Test Rate
No.	Name of Tests	(Tk.)
	Tests on Water	
	Routine Drinking Water Parameters (Package)	
1	рН	(C)
2	Colour (True or Apparent)	9,600 + 2,600 = 12,200 (Drinking+As+TC/FC) 7,500 + 2,000 = 9,500 (Drinking+As)
3	Turbidity	+As+ ing+
4	Total Hardness	king Drink
5	Chloride (Cl)	(Drin 00 ([
6	Total Dissolved Solids (TDS)	,200 = 9,5
7	Manganese (Mn)	= 12 ,000 :
8 9	Arsenic (As) Total Iron (Fe)	0 + 2,600 = 12,200 (Drinking+As+TC 7,500 + 2,000 = 9,500 (Drinking+As)
9 10	Total Coliform(TC)/Thermotolerent Coliform (TTC)	00 + 2 7,50
	Fecal Coliform (FC)	6,60
	Environmental Quality of Soil, Sludge and Solids	
1	pH (Chemical 200/-)	1,200
2	Electrical Conductivity (Chemical 300/-)	1,500
2	Organic Matter Content by Loss on Ignition Test	4,500
4	Water Soluble Cl / Salinity/ PO_4 / SO_4 (each) (Chemical 400/-)	4,500
-		.,
	Metal Analysis of Soil, Sludge and Solids following Total Extraction and / or TCLP	
5	Total Extraction Charges (each sample) (Chemical 500/-)	2,500
	TCLP Extractant Analysis	
	Ca/Cd/Co/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 600/-)	2,500
6	Arsenic (As) - using GFAAS (Chemical 600/-)	2,500
Ŭ	Mercury (Hg) - Cold Vapor Method (Chemical 1200/-)	6,000
	Selenium (Se) - using GFAAS / Ba (Chemical 800/-)	5,000
-	Na / K - using FLAAS (each) (Chemical 500/-)	3,000
7	Toxic Characteristics Leaching Procedure (TCLP) Charge (Chemical 1500/-) Extractant Analysis	6,000
	Ca/Cd/Co/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 600/-)	2,500
8	Arsenic (As) - using GFAAS (Chemical 600/-)	2,500
	Mercury (Hg) - Cold Vapor Method (Chemical 1200/-)	6,000
	Selenium (Se) - using GFAAS / Ba (Chemical 800/-)	5,000
	Na / K - using FLAAS (each) (Chemical 500/-) Calorific Values of Sludge, Solids and Semi-Solids	3,000
1	Calorific Values of Sludge/Solids/Semi-Solids	10,000
	5	
	Ambient Air Quality & Exhuast Emission Monitoring	g *
	Parameters	
	Ambient Air Quality Parameters	
1	SPM (Chemical 1500/-), PM10, PM2.5 (Chemical 2500/-), CO, NO2, SO2, VOCs	
	Exhaust Emission Parameters	Please
2	CO2, CO, O2, NO, NO2, SO2, CH4, NH3	contact us
	Noise Level Monitoring *	
1	Minimum Fee (per 5 locations in one entity)	20,000
2	Clibration of Noise Meter (per equipment)	5,000
	Field Sampling *	
1	Sampling for Bacteriological Analysis	7,000 + *
2	Sampling for Physical and Chemical Analysis	7,000 + *
	TUBEWELL DESIGN	
1	Tubewell Design (depth up to 600'), incl. 8 Nos. sand test ^	17,000+16,000
2	Tubewell Design (depth above 600'), Incl. 5 Nos. sand test ^	18,000+22,000
Ē		

r

Miscellaneous Water Quality Parameters 1 pH (Chemical 200/-) 55 2 Colour Scanning at Specific Wavelength/UV-VISRange (Chemical 200/-) 50 3 Colour Scanning at Specific Wavelength/UV-VISRange (Chemical 200/-) 50 5 Carbon-di-Oxide (CO ₂) / Acidity (Chemical 150/-) 55 6 P-Alkalinity/M-Alkalinity/T-Alkalinity (Chemical 200/-) 70 7 Total Hardness (Chemical 300/-) 11.1 9 Ca - Hardness (Chemical 800/-) 3.0 10 Mg - Hardness (Chemical 800/-) 3.0 11 Chloride (CI) (Chemical 250/-) 90 12 Fluoride (F) (Chemical 100/-) 1.2 14 Nitrate - Nitrogen (NO ₂ - N) (Chemical 250/-) 90 15 Nitrite - Nitrogen (TKN) / Organic Nitrogen (Chemical 3.000/-) 16.0 18 Chlorine Content - Total Cl ₂ (Chemical 250/-) 80 19 Chlorine Content - Total Cl ₂ (Chemical 200/-) 80 20 Iodine Content (Chemical 200/-) 80 21 Total Nitrogen (TKN) / Organic Nitrogen (Chemical 300/-) 1.1 22 <	SI. No.	Name of Tests	Test Rate (Tk.)
2 Colour (True or Apparent) (Chemical 200/-) 5 3 Colour Scaning at Specific WavelenghUV-VISRange (Chemical 200/-) 2,0 4 Turbidity (Chemical 200/-) 55 5 Carbon-Io-Oxide (CO ₂) Acidity (Chemical 150/-) 56 6 P-Alkalinity/M-Alkalinity/T-Alkalinity (Chemical 200/-) 66 7 Carbonate (CO ₂) or BI-carbonate (HCO ₃) + pH (Chemical 200/-) 70 8 Total Hardness (Chemical 300/-) 1,1 9 Ca - Hardness (Chemical 300/-) 3,0 11 Chloride (CI) (Chemical 250/-) 99 12 Fluoride (F) (Chemical 100/-) 77 13 Ammonia-Nitrogen (NU ₃ - N) (Chemical 250/-) 99 14 Nitrate - Nitrogen (NO ₃ - N) (Chemical 250/-) 90 15 Total Nitrogen (NO ₃ - N) (Chemical 250/-) 90 16 Total Kjeldahi Nitrogen (TKN) / Organic Nitrogen (Chemical 3,000/-) 16,0 17 Total Kjeldahi Nitrogen (NC) - N) (Chemical 250/-) 80 20 Iodrine Content - Total Cl ₂ (Chemical 250/-) 80 21 Bordmine Content (Chemical 200/-) 10		Miscellaneous Water Quality Parameters	(111)
3 Colour Scanning at Specific Wavelengih/UV-VISRange (Chemical 200/-) 5 4 Turbidity (Chemical 200/-) 55 5 Carbon-di-Oxide (CO ₂) / Acidity (Chemical 200/-) 56 6 P-Alkalinity/M-Alkalinity/T-Alkalinity (Chemical 200/-) 76 7 Carbonate (CO ₂) or Bic-atomonate (HCO ₂) + pH (Chemical 200/-) 77 8 Total Hardness (Chemical 300/-) 3.0 10 Mg - Hardness (Chemical 250/-) 99 11 Chioride (C) (Chemical 250/-) 91 14 Nitrate - Nitrogen (NO ₂ - N) (Chemical 250/-) 96 15 Nitrite - Nitrogen (NO ₂ - N) (Chemical 250/-) 96 16 Total Nietogen (TN) / Organic Nitrogen (Chemical 3.000/-) 16,0 18 Content - Total Cl ₂ (Chemical 250/-) 80 20 Iodine Content - Total Cl ₂ (Chemical 250/-) 80 21 Bromine Content (Chemical 200/-) 81 22 Broat Subidis (TSS)/Insoluble Soids/TSS+TDS+TS) (Chemical 300/-) 1,1 23 Total Subjende Solids (TDS) (Chemical 150/-) 1,1 24 Total Subids (TDS) (Chemical 100/-)	1	pH (Chemical 200/-)	50
4 Turbidity (Chemical 200/-) 5 5 Carbon-di-Oxide (CO ₃) / Acidity (Chemical 150/-) 5 6 P-Alkalinity/M-Alkalinity/T-Alkalinity (Chemical 200/-) 6 7 Carbonate (CO ₃) or Bi-carbonate (HCO ₃) + pH (Chemical 200/-) 7 8 Total Hardness (Chemical 300/-) 3.0 10 Mg - Hardness (Chemical 800/-) 3.0 11 Ca - Hardness (Chemical 250/-) 9 12 Fluoride (CI) (Chemical 250/-) 9 13 Ammonia-Nitrogen (NU ₃ - N) (Chemical 250/-) 9 14 Nitrate - Nitrogen (NO ₂ - N) (Chemical 250/-) 9 15 Nitrite - Nitrogen (NO ₂ - N) (Chemical 250/-) 9 16 Total Kjeldah Nitrogen (TKN) / Organic Nitrogen (Chemical 3.000/-) 16,0 17 Total Kjeldah Nitrogen (TKN) / Organic Nitrogen (Chemical 3.000/-) 16,0 18 Cholrine Content - Total Cl ₂ (Chemical 200/-) 8 20 Iodine Content (Chemical 200/-) 8 21 Bromine Content (Chemical 200/-) 10 22 Total Suida (TS) (Chemical 100/-) 1.1	2	Colour (True or Apparent) (Chemical 200/-)	50
5 Carbon-di-Oxide (CO ₂) / Acidity (Chemical 150/-) 5 6 P-Alkalinity/M-Alkalinity/T-Alkalinity (Chemical 200/-) 6 7 Carbonate (CO ₂) or Bi-carbonate (HCO ₂) + pH (Chemical 200/-) 7 8 Total Hardness (Chemical 800/-) 3.0 9 Ca - Hardness (Chemical 800/-) 3.0 11 Chloride (CI) (Chemical 250/-) 9 12 Fluoride (F) (Chemical 100/-) 7 13 Ammonia-Nitrogen (NO ₃ - N) (Chemical 250/-) 9 15 Nitrite - Nitrogen (NO ₂ - N) (Chemical 250/-) 9 16 Total Kjeldahl Nitrogen (TKN) / Organic Nitrogen (Chemical 3.000/-) 16.0 18 Chlorine Content - Total Cl ₂ (Chemical 250/-) 8 19 Chlorine Content - Total Cl ₂ (Chemical 250/-) 8 20 Iodine Content (Chemical 200/-) 8 21 Bromine Content (Chemical 200/-) 8 22 Fotal Suspended Solist (TS) (Chemical 1200/-) 10.1 23 Total Solids (TS) (Chemical 1200/-) 1.1 24 Total Solids (TS) (Chemical 200/-) 1.2 25<			2,00
6 P-Alkalinity/M-Alkalinity/T-Alkalinity (Chemical 200/-) 6 7 Carbonate (CO ₃) or Bi-carbonate (HCO ₃) + pH (Chemical 200/-) 7 8 Total Hardness (Chemical 800/-) 3,0 10 Mg - Hardness (Chemical 200/-) 3,0 11 Chloride (CI) (Chemical 250/-) 9 12 Fluoride (F) (Chemical 250/-) 9 13 Ammonia-Nitrogen (NO ₃ - N) (Chemical 250/-) 9 15 Nitrite - Nitrogen (NO ₃ - N) (Chemical 250/-) 9 16 Total Nitrogen (TKN) / Organic Nitrogen (Chemical 3,000/-) 16,0 17 Total Xitrogen (TKN) / Organic Nitrogen (Chemical 3,000/-) 16,0 18 Chlorine Content - Total Cl ₂ (Chemical 250/-) 8 20 Iodine Content (Chemical 200/-) 8 21 Bromine Content (Chemical 200/-) 8 22 Iodine Content (Chemical 200/-) 1,1 23 Total Suspender Solids (TSS)Insolubie Solids/(TSS+TDS+TS) (Chemical 500/-) 1,1 24 Total Suspender Solids (TSS)Insolubie Solids/(TSS+TDS+TS) (Chemical 500/-) 1,2 25 Total Dissolved Solids (TSS)Insolubie			50
7 Carbonate (CO ₃) or Bi-carbonate (HCO ₃) + pH (Chemical 200/-) 7 8 Total Hardness (Chemical 300/-) 1,11 9 Ca - Hardness (Chemical 800/-) 3,0 10 Mg - Hardness (Chemical 280/-) 3,0 11 Chloride (C) (Chemical 250/-) 9 12 Fluoride (F) (Chemical 250/-) 9 13 Ammonia-Nitrogen (NO ₃ - N) (Chemical 250/-) 9 14 Nitrite - Nitrogen (NO ₂ - N) (Chemical 250/-) 9 15 Nitrite - Nitrogen (TN) (Chemical 1500/-) 6.0 16 Total Kjeldah Nitrogen (TKN) / Organic Nitrogen (Chemical 3,000/-) 16.0 18 Chlorine Content - Total Cl ₂ (Chemical 250/-) 8 20 Iodine Content (Chemical 200/-) 8 21 Bromine Content (Chemical 200/-) 8 22 Break Point Chlorination (Chemical 1200/-) 10,1 23 Total Suspended Solids (TSS)/mobule Solids/(TSS+TDS+TS) (Chemical 500/-) 2,2 24 Total Suspended Solids (TSS)/mobule Solids/(TSS+TDS+TS) (Chemical 500/-) 1,1 24 Total Suspended Solids (TSS)/mobule Solids/(TSS+TDS+TS) (Chemic			50
8 Total Hardness (Chemical 300/-) 1,11 9 Ca - Hardness (Chemical 800/-) 3,00 10 Mg - Hardness (Chemical 800/-) 3,00 11 Chloride (Cl) (Chemical 250/-) 9 12 Fluoride (F) (Chemical 100/-) 17 13 Ammonia-Nitrogen (NO ₂ - N) (Chemical 250/-) 9 15 Nitrite - Nitrogen (NO ₂ - N) (Chemical 250/-) 9 16 Total Kjeldahl Nitrogen (TKN) / Organic Nitrogen (Chemical 3,000/-) 16,00 17 Total Kjeldahl Nitrogen (TKN) / Organic Nitrogen (Chemical 3,000/-) 16,00 18 Chlorine Content - Total Cl ₂ (Chemical 250/-) 8 20 Iodine Content (Chemical 200/-) 8 21 Bromine Content (Chemical 200/-) 8 22 Break Point Chlorination (Chemical 1200/-) 10,0 23 Total Solids (TS) (Chemical 100/-) 1,1 24 Total Solymende Solids (TS)Ninsoluble Solids(SICSS-TDS+TS) (Chemical 500/-) 1,1 25 Total Solymende Solids (TSS)Insoluble Solids(SICS-TDS+TS) (Chemical 500/-) 1,1 26 Silca Content (SIO ₂) (Chemical 300/-)		· · · · · · · · · · · · · · · · · · ·	60
9 Ca - Hardness (Chemical 800/-) 3,0 10 Mg - Hardness (Chemical 260/-) 3,0 11 Chloride (C) (Chemical 100/-) 7/ 13 Ammonia-Nitrogen (NU ₃ - N) (Chemical 250/-) 9/ 14 Nitrate - Nitrogen (NO ₂ - N) (Chemical 250/-) 9/ 15 Nitrite - Nitrogen (TN) (Chemical 250/-) 9/ 16 Total Nitrogen (TKN) / Organic Nitrogen (Chemical 3,000/-) 16,00 18 Chlorine Content - Total Cl ₂ (Chemical 250/-) 8/ 20 Iodine Content - Free Cl ₂ (Chemical 250/-) 8/ 21 Bromine Content (Chemical 200/-) 8/ 22 Bromine Content (Chemical 200/-) 8 23 Total Suspended Solids (TSS)Insoluble Solids(TSS+TDS+TS) (Chemical 50/-) 1,11 24 Total Suspended Solids (TSS)Insoluble Solids(TSS+TDS+TS) (Chemical 50/-) 1,11 24 Total Suspended Solids (TSS)Insoluble Solids(TSS+TDS+TS) (Chemical 50/-) 1,11 25 Total Posphorous (TP) (Chemical 200/-) 1,51 26 Content (SiO ₂) (Chemical 200/-) 3,71 27 Orthophosphate (PO ₄) (Chemical 200/			70
10 Mg - Hardness (Chemical 800/-) 3,0 11 Chloride (C) (Chemical 250/-) 9 12 Fluoride (F) (Chemical 250/-) 7 13 Ammonia-Nitrogen (NO ₃ - N) (Chemical 400/-) 1,2 14 Nitrate - Nitrogen (NO ₂ - N) (Chemical 250/-) 9 15 Nitrite - Nitrogen (TN) / Chemical 1500/-) 6,0 16 Total Nitrogen (TKN) / Organic Nitrogen (Chemical 3.000/-) 16,00 18 Chlorine Content - Total Cl ₂ (Chemical 250/-) 8 20 Iodine Content - Free Cl ₂ (Chemical 200/-) 8 21 Bromine Content (Chemical 200/-) 8 22 Total Solids (TS) (Chemical 100/-) 10,0 23 Total Solids (TS) (Chemical 100/-) 1,1 24 Total Suspended Solids (TDS) (Chemical 150/-) 1,1 25 Total Suspended Solids (TDS) (Chemical 30/-) 3,7 26 Silica Content (SiO ₂) (Chemical 200/-) 3,7 27 Electrical Conductivity (EC) (Chemical 200/-) 3,7 28 Total Phosphorous (TP) (Chemical 200/-) 3,7 33 Su	-		
11 Chloride (CI) (Chemical 250/-) 9 12 Fluoride (F) (Chemical 100/-) 77 13 Ammonia-Nitrogen (NU ₃ - N) (Chemical 250/-) 9 14 Nitrate - Nitrogen (NU ₃ - N) (Chemical 250/-) 9 15 Nitrite - Nitrogen (TN) (Chemical 150/-) 6.0 16 Total Kjeldah Nitrogen (TKN) / Organic Nitrogen (Chemical 3,000/-) 16.0 17 Total Kjeldah Nitrogen (TKN) / Organic Nitrogen (Chemical 3,000/-) 16.0 18 Chlorine Content - Total Cl ₂ (Chemical 250/-) 8 20 Iodine Content (Chemical 200/-) 8 21 Bromine Content (Chemical 200/-) 8 22 Bromine Content (Chemical 200/-) 10.0 23 Total Solids (TS) (Chemical 100/-) 1,1 24 Total Solids (TS) (Chemical 100/-) 1,1 25 Total Solids (TS) (Chemical 200/-) 1,5 27 Electrical Conductivity (EC) (Chemical 30/-) 1,0 36 Silca Content (SiO ₂) (Chemical 200/-) 1,0 31 Sulphate (SO ₄) (Chemical 200/-) 3,0 32 Bioc			3,00
12 Fluoride (F) (Chemical 100/-) 7 13 Ammonia-Nitrogen (NH ₃ - N) (Chemical 400/-) 1,2 14 Nitrate - Nitrogen (NO ₃ - N) (Chemical 250/-) 9 15 Nitrite - Nitrogen (TN) (Chemical 250/-) 9 16 Total Nitrogen (TN) (Chemical 1500/-) 6,00 17 Total Kjeldahi Nitrogen (TKN) / Organic Nitrogen (Chemical 3,000/-) 16,00 18 Chlorine Content - Total Cl ₂ (Chemical 250/-) 8 20 Iodine Content (Chemical 200/-) 8 21 Bromine Content (Chemical 200/-) 8 22 Break Point Chlorination (Chemical 1200/-) 10,0 23 Total Suspended solids (TSS) (Chemical 100/-) 1,1 24 Total Suspended solids (TDS) (Chemical 150/-) 2,2 25 Total Dissolved Solids (TDS) (Chemical 30/-) 1,1 26 Silica Content (SiO ₂) (Chemical 200/-) 1,0 37 Electrical Conductivity (EC) (Chemical 30/-) 1,1 26 Total Phosphorous (TP) (Chemical 200/-) 1,0 37 Total Supende Solids (TDS) (Chemical 200/-) 3,0			90
14Nitrate - Nitrogen (NO3 - N) (Chemical 250/-)915Nitrite - Nitrogen (TN) (Chemical 1500/-)6.0017Total Nitrogen (TKN) / Organic Nitrogen (Chemical 3,000/-)16,0018Chlorine Content - Total Cl2 (Chemical 250/-)820Iodine Content - Free Cl2 (Chemical 250/-)821Bromine Content (Chemical 200/-)822Break Point Chlorination (Chemical 1200/-)823Total Solids (TS) (Chemical 100/-)10,0024Total Solids (TS) (Chemical 100/-)1,1125Total Solids (TS) (Chemical 100/-)1,1126Silica Content (SiO2) (Chemical 400/-)1,5127Electrical Conductivity (EC) (Chemical 350/-)7728Total Phosphorous (TP) (Chemical 200/-)1,0130Hydrogen Sulphide (H2S) / Odour (Chemical 200/-)3,7031Sulphate (SO4) (Chemical 200/-)1,0032Biochemical Oxygen Demand (BOD)-5 day (Chemical 400/-)2,0033Chemical Oxygen Demand (COD) (Chemical 600/-)2,0034Dissolved Oxygen (DO) (Chemical 500/-)1,835Numinum (AI) (Chemical 500/-)1,834Aluminum (AI) (Chemical 500/-)1,834Aluminum (AI) (Chemical 500/-)1,834Selenium (Se) - using GFAAS (Chemical 400/-)2,235Naganese (Mn): UV - VIS (Chemical 500/-)1,834K - using FLAAS (each) (Chemical 500/-)1,834Naganese (M2) (Chemical 500/-)1,835Nage	12		70
15 Nitrite - Nitrogen (NO2 - N) (Chemical 250/-) 9 16 Total Nitrogen (TN) (Chemical 1500/-) 6.00 17 Total Kjeldahl Nitrogen (TKN) / Organic Nitrogen (Chemical 3,000/-) 16,00 18 Chlorine Content - Total Cl ₂ (Chemical 250/-) 8 20 Iodine Content (Chemical 200/-) 8 21 Bromine Content (Chemical 200/-) 8 22 Break Point Chlorination (Chemical 1200/-) 10,0 23 Total Solids (TS) (Chemical 100/-) 1,1 24 total Suspended Solids (TSS)/Insoluble Solids/(TSS+TDS+TS) (Chemical 500/-) 2,2 25 Total Dissolved Solids (TDS) (Chemical 150/-) 1,1 26 Silica Content (SiO ₂) (Chemical 400/-) 1,5 27 Electrical Conductivity (EC) (Chemical 200/-) 3,7 29 Orthophosphate (PO ₄) (Chemical 200/-) 1,0 30 Hydrogen Sulphide (H ₂ S) / Odour (Chemical 200/-) 3 31 Sulphate (SO2,) (Chemical 200/-) 3,0 32 Biochemical 1,200/-) 3,0 33 Chemical 0,0 5,0 34	13	Ammonia-Nitrogen (NH ₃ - N) (Chemical 400/-)	1,20
16 Total Nitrogen (TN) (Chemical 1500/-) 6.0 17 Total Kjeldahl Nitrogen (TKN) / Organic Nitrogen (Chemical 3,000/-) 16,0 18 Chlorine Content - Total Cl ₂ (Chemical 250/-) 8 20 Iodine Content (Chemical 200/-) 8 21 Bromine Content (Chemical 200/-) 8 22 Break Point Chlorination (Chemical 1200/-) 10,0 23 Total Solids (TS) (Chemical 100/-) 1,1 24 total Suspended Solids (TSS)/Insolute Solds/(TSS+TDS+TS) (Chemical 500/-) 2,2 25 Total Suspended Solids (TSS)/Insolute Solds/(TSS+TDS+TS) (Chemical 500/-) 1,1 26 Silica Content (SiO ₂) (Chemical 400/-) 1,5 27 Electrical Conductivity (EC) (Chemical 200/-) 1,0 30 Hydrogen Sulphide (H ₂ S) / Odour (Chemical 200/-) 1,0 31 Sulphate (SO ₄) (Chemical 200/-) 8 32 Biochemical 0xygen Demand (BOD)-5 day (Chemical 400/-) 2,0 33 Chemical 0xygen Demand (COD) (Chemical 600/-) 2,0 34 Dissolved 0xygen (DO) (Chemical 500/-) 1,8 37 Aluminum (AI) (Chemi	14	Nitrate - Nitrogen (NO ₃ - N) (Chemical 250/-)	90
11 Total Kjeldahi Nitrogen (TKN) / Organic Nitrogen (Chemical 3,000/-) 16,0 18 Chlorine Content - Total Cl ₂ (Chemical 250/-) 8 19 Chlorine Content (Chemical 200/-) 8 20 Iodine Content (Chemical 200/-) 8 21 Bromine Content (Chemical 200/-) 8 22 Break Point Chlorination (Chemical 1200/-) 10,0 23 Total Suspended Solids (TSS)/Insoluble Solids(TSS+TDS+TS) (Chemical 500/-) 2,2 25 Total Suspended Solids (TDS) (Chemical 150/-) 1,1 24 Total Suspended Solids (TDS) (Chemical 150/-) 1,5 25 Total Dissolved Solids (TDS) (Chemical 350/-) 7 26 Total Phosphorous (TP) (Chemical 200/-) 3,7 29 Orthophosphate (PQ ₄) (Chemical 200/-) 1,0 30 Hydrogen Sulphide (H ₂ S) / Odour (Chemical 600/-) 2,0 33 Chemical 1,200/-) 6 34 Dissolved Oxygen Demand (BOD)-5 day (Chemical 400/-) 2,0 35 Bioren (B) (Chemical 500/-) 3,0 36 Boran (B) (Chemical 500/-) 3,0	15	Nitrite - Nitrogen (NO ₂ - N) (Chemical 250/-)	90
18Chlorine Content - Total Cl2 (Chemical 250/-)819Chlorine Content - Free Cl2 (Chemical 250/-)820Iodine Content (Chemical 200/-)821Bromine Content (Chemical 200/-)822Break Point Chlorination (Chemical 1200/-)10,023Total Solids (TS) (Chemical 100/-)1,1,124Total Solids (TS) (Chemical 100/-)1,1,124Total Solids (TS) (Chemical 150/-)1,1,125Total Dissolved Solids (TDS) (Chemical 150/-)1,1,126Silica Content (SiO_2) (Chemical 400/-)1,5,527Electrical Conductivity (EC) (Chemical 350/-)728Total Phosphorous (TP) (Chemical 200/-)3,729Orthophosphate (PO_4) (Chemical 200/-)931Sulphate (SO_4) (Chemical 200/-)932Biochemical Oxygen Demand (BOD)-5 day (Chemical 400/-)2,0033Chemical Oxygen Demand (COD) (Chemical 600/-)2,0034Dissolved Oxygen (DO) (Chemical 400/-)3,035Boron (B) (Chemical 1,200/-)3,036Manganese (Mn): UV - VIS (Chemical 500/-)1,837Aluminum (Al) (Chemical 500/-)1,838Silver (Ag) (Chemical 500/-)1,840Selenium (Se) - using GFAAS (Chemical 400/-)2,238Nickel (Ni) / Cobalt (each) (Chemical 1,000/-)4,044Mercury(Hg)-Cold Vapour Method (Mini 30 days required) (Chemical 1200/-)3,045Na / K - using FLAAS (cach) (Chemical 1,000/-)4,0 <td< td=""><td>16</td><td>Total Nitrogen (TN) (Chemical 1500/-)</td><td>6,00</td></td<>	16	Total Nitrogen (TN) (Chemical 1500/-)	6,00
19Chlorine Content - Free Cl2 (Chemical 250/-)820Iodine Content (Chemical 200/-)821Bromine Content (Chemical 200/-)822Break Point Chlorination (Chemical 1200/-)10,023Total Solids (TS) (Chemical 100/-)1,124Total Subende Solids (TSS)Insolute Solids(TSS+TDS+TS) (Chemical 500/-)2,225Total Dissolved Solids (TDS) (Chemical 150/-)1,126Silica Content (SiO_2) (Chemical 400/-)1,527Electrical Conductivity (EC) (Chemical 350/-)728Total Phosphorous (TP) (Chemical 200/-)3,729Orthophosphate (PO_4) (Chemical 200/-)10030Hydrogen Sulphide (H2S) / Odour (Chemical 200/-)832Biochemical Oxygen Demand (BOD)-5 day (Chemical 400/-)2,033Chemical Oxygen Demand (COD) (Chemical 600/-)4,034Dissolved Oxygen (DO) (Chemical 400/-)3,035Boron (B) (Chemical 1,200/-)3,036Manganese (Mn): UV - VIS (Chemical 500/-)1,837Aluminum (AI) (Chemical 500/-)1,840Selenium (Se) - using GFAAS (Chemical 900/-)4,041Ca/Cd/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 100/-)2,243Nickel (Ni) / Cobalt (each) (Chemical 1,000/-)4,044Ferrous Iron / Ferric Iron (Chemical 1,000/-)4,045Cyanide (Cn) (Chemical 1000/-)4,046Ferrous Iron / Chemical 1000/-)5,047Total Organic Carbon (DOC) (Chemical	17	Total Kjeldahl Nitrogen (TKN) / Organic Nitrogen (Chemical 3,000/-)	16,00
20Iodine Content (Chemical 200/-)821Bromine Content (Chemical 200/-)822Break Point Chlorination (Chemical 1200/-)10,023Total Solids (TS) (Chemical 100/-)1,124Total Suspended Solids (TSS)/Insoluble Solids(TSS+TDS+TS) (Chemical 500/-)2,225Total Dissolved Solids (TDS) (Chemical 150/-)1,126Silica Content (SiO ₂) (Chemical 400/-)1,527Electrical Conductivity (EC) (Chemical 350/-)7728Total Phosphorous (TP) (Chemical 200/-)3,729Orthophosphate (PO ₄) (Chemical 200/-)1,030Hydrogen Sulphide (H ₂ S) / Odour (Chemical 200/-)931Sulphate (SO ₄) (Chemical 200/-)832Biochemical Oxygen Demand (BOD)-5 day (Chemical 400/-)2,033Chemical Oxygen Demand (COD) (Chemical 600/-)2,034Dissolved Oxygen (DO) (Chemical 400/-)635Boron (B) (Chemical 1,200/-)3,036Manganese (Mn): UV - VIS (Chemical 500/-)1,837Aluminum (Al) (Chemical 500/-)1,838Silver (Ag) (Chemical 500/-)1,839Arsenic (As) - using GFAAS (Chemical 400/-)2,243Nickel (Ni) / Cobalt (each) (Chemical 1,000/-)4,044Mercuy(Hg)-Coid Vapour Method (Mini. 30 days required) (Chemical 500/-)1,842Na / K - using FLAAS (chemical 1,000/-)4,044Mercuy(Hg)-Cold Vapour Method (Mini. 30 days required) (Chemical 100/-)4,045Cyanid	18	Chlorine Content - Total Cl ₂ (Chemical 250/-)	80
21 Bromine Content (Chemical 200/-) 88 22 Break Point Chlorination (Chemical 1200/-) 10,0 23 Total Solids (TS) (Chemical 100/-) 1,1 24 Total Suspended Solids (TSS)/Insoluble Solids/(TSS+TDS+TS) (Chemical 500/-) 2,2 25 Total Dissolved Solids (TDS) (Chemical 150/-) 1,1 26 Silica Content (SiO ₂) (Chemical 400/-) 1,5 27 Electrical Conductivity (EC) (Chemical 350/-) 77 28 Total Phosphorous (TP) (Chemical 200/-) 3,7 29 Orthophosphate (PO ₄) (Chemical 200/-) 9 31 Sulphate (SO ₄) (Chemical 200/-) 8 32 Biochemical Oxygen Demand (BOD)-5 day (Chemical 400/-) 2,0 33 Chemical Oxygen Demand (COD) (Chemical 600/-) 2,0 34 Dissolved Oxygen (DO) (Chemical 500/-) 3,0 35 Boron (B) (Chemical 500/-) 1,8 37 Aluminum (Al) (Chemical 500/-) 1,8 38 Silver (Ag) (Chemical 500/-) 1,8 40 Selenium (Se) - using GFAAS (Chemical 600/-) 1,8 42	19	Chlorine Content - Free Cl ₂ (Chemical 250/-)	80
22 Break Point Chlorination (Chemical 1200/-) 10.0 23 Total Solids (TS) (Chemical 100/-) 1,11 24 Total Suspended Solids (TSS)/Insoluble Solids/(TSS+TDS+TS) (Chemical 500/-) 2,21 25 Total Dissolved Solids (TDS) (Chemical 150/-) 1,11 26 Silica Content (SiO ₂) (Chemical 400/-) 1,55 27 Electrical Conductivity (EC) (Chemical 350/-) 77 28 Total Phosphorous (TP) (Chemical 200/-) 3,77 29 Orthophosphate (PO ₄) (Chemical 200/-) 9 31 Sulphate (SO ₄) (Chemical 200/-) 8 32 Biochemical Oxygen Demand (BOD)-5 day (Chemical 400/-) 2,00 33 Chemical Oxygen Demand (COD) (Chemical 600/-) 2,00 34 Dissolved Oxygen (DO) (Chemical 500/-) 3,00 35 Boron (B) (Chemical 500/-) 1,88 36 Manganese (Mn): UV - VIS (Chemical 600/-) 1,88 37 Aluminum (Al) (Chemical 500/-) 1,88 38 Silver (Ag) (Chemical 500/-) 1,88 40 Selenium (Se) - using GFAAS (Chemical 600/-) 1,88	20	lodine Content (Chemical 200/-)	80
23Total Solids (TS) (Chemical 100/-)1,124Total Suspended Solids (TSS)/Insoluble Solids/(TSS+TDS+TS) (Chemical 500/-)2,225Total Dissolved Solids (TDS) (Chemical 150/-)1,126Silica Content (SiO ₂) (Chemical 400/-)1,527Electrical Conductivity (EC) (Chemical 350/-)728Total Phosphorous (TP) (Chemical 200/-)3,729Orthophosphate (PO ₄) (Chemical 200/-)931Sulphate (SO ₄) (Chemical 200/-)832Biochemical Oxygen Demand (BOD)-5 day (Chemical 400/-)2,033Chemical Oxygen Demand (COD) (Chemical 600/-)2,034Dissolved Oxygen (DO) (Chemical 400/-)635Boron (B) (Chemical 1,200/-)3,036Manganese (Mn): UV - VIS (Chemical 500/-)1,837Aluminum (Al) (Chemical 500/-)1,838Silver (Ag) (Chemical 500/-)1,840Selenium (Se) - using GFAAS (Chemical 600/-)1,841Ca/Cd/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 500/-)1,842Na / K - using FLAAS (each) (Chemical 400/-)2,243Nickel (Ni) / Obalt (each) (Chemical 1,000/-)3,044Mercury(Hg)-Cold Vapour Method (Mini 30 days required) (Chemical 1200/-)4,045Cyanide (Cn) (Chemical 1000/-)2,547Total Organic Carbon (TOC) (Chemical 1000/-)2,548Dissolved Organic Carbon (TOC) (Chemical 1000/-)5,050Sodium Absorption Ratio (SAR) (Chemical 1000/-)5,0 <t< td=""><td>21</td><td>Bromine Content (Chemical 200/-)</td><td>80</td></t<>	21	Bromine Content (Chemical 200/-)	80
24 Total Suspended Solids (TSS)/Insoluble Solids/(TSS+TDS+TS) (Chemical 500/-) 2,2 25 Total Dissolved Solids (TDS) (Chemical 150/-) 1,11 26 Silica Content (SiO ₂) (Chemical 400/-) 1,5 27 Electrical Conductivity (EC) (Chemical 350/-) 7 28 Total Phosphorous (TP) (Chemical 200/-) 3,7 29 Orthophosphate (PO ₄) (Chemical 200/-) 1,0 30 Hydrogen Sulphide (H ₂ S) / Odour (Chemical 200/-) 8 32 Biochemical Oxygen Demand (BOD)-5 day (Chemical 400/-) 2,0 33 Chemical Oxygen Demand (COD) (Chemical 600/-) 2,0 34 Dissolved Oxygen (DO) (Chemical 500/-) 3,0 35 Boron (B) (Chemical 500/-) 3,0 36 Manganese (Mn): UV - VIS (Chemical 500/-) 1,8 37 Aluminum (Al) (Chemical 500/-) 1,8 38 Silver (Ag) (Chemical 500/-) 1,8 37 Aluminum (Se) - using GFAAS (Chemical 600/-) 1,8 40 Selenium (Se) - using GFAAS (Chemical 400/-) 2,2 41 Ca/Cdr/Cr/Le/Mg/Mn/N/WPb/Zn - using FLAAS (each) (Chemical 500/-)	-		10,00
25 Total Dissolved Solids (TDS) (Chemical 150/-) 1,1 26 Silica Content (SiO ₂) (Chemical 400/-) 1,5 27 Electrical Conductivity (EC) (Chemical 350/-) 7 28 Total Phosphorous (TP) (Chemical 200/-) 3,7 29 Orthophosphate (PQ ₄) (Chemical 200/-) 1,0 30 Hydrogen Sulphide (H ₂ S) / Odour (Chemical 200/-) 9 31 Sulphate (SO ₄) (Chemical 200/-) 8 32 Biochemical Oxygen Demand (BOD)-5 day (Chemical 400/-) 2,0 33 Chemical Oxygen Demand (COD) (Chemical 600/-) 2,0 34 Dissolved Oxygen (DO) (Chemical 400/-) 60 35 Boron (B) (Chemical 1,200/-) 3,0 36 Manganese (Mn): UV - VIS (Chemical 500/-) 1,8 37 Aluminum (Al) (Chemical 500/-) 1,8 38 Silver (Ag) (Chemical 500/-) 1,8 39 Arsenic (As) - using GFAAS (Chemical 900/-) 40 41 Ca/C/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 100/-) 2,2 43 Nickel (Ni) / Cobalt (each) (Chemical 1,000/-) 3,0			1,10
26 Silica Content (SiO ₂) (Chemical 400/-) 1,57 27 Electrical Conductivity (EC) (Chemical 350/-) 7/ 28 Total Phosphorous (TP) (Chemical 200/-) 3,7/ 29 Orthophosphate (PQ ₄) (Chemical 200/-) 1,00 30 Hydrogen Sulphide (H ₂ S) / Odour (Chemical 200/-) 9 31 Sulphate (SO ₄) (Chemical 200/-) 8 32 Biochemical Oxygen Demand (BOD)-5 day (Chemical 400/-) 2,00 33 Chemical Oxygen Demand (COD) (Chemical 600/-) 2,00 34 Dissolved Oxygen (DO) (Chemical 400/-) 60 35 Boron (B) (Chemical 1,200/-) 3,00 36 Manganese (Mn): UV - VIS (Chemical 500/-) 1,88 37 Aluminum (Al) (Chemical 500/-) 1,88 38 Silver (Ag) (Chemical 500/-) 1,88 40 Selenium (Se) - using GFAAS (Chemical 400/-) 2,22 43 Nickel (Ni) / Cobalt (each) (Chemical 400/-) 2,22 43 Nickel (Ni) / Cobalt (each) (Chemical 1,000/-) 3,00 44 Mercury(Hg)-Cold Vapour Method (Mini. 30 days required) (Chemical 1200/-) 4,00			
27Electrical Conductivity (EC) (Chemical 350/-)7/28Total Phosphorous (TP) (Chemical 200/-)3,7/29Orthophosphate (PO_4) (Chemical 200/-)1,0/30Hydrogen Sulphide (H_2S) / Odour (Chemical 200/-)9/31Sulphate (SO_4) (Chemical 200/-)8/32Biochemical Oxygen Demand (BOD)-5 day (Chemical 400/-)2,0/33Chemical Oxygen Demand (COD) (Chemical 600/-)2,0/34Dissolved Oxygen (DO) (Chemical 400/-)6/35Boron (B) (Chemical 1,200/-)3,0/36Manganese (Mn): UV - VIS (Chemical 500/-)1,8/37Aluminum (Al) (Chemical 500/-)4,5/38Silver (Ag) (Chemical 500/-)5,0/39Arsenic (As) - using GFAAS (Chemical 600/-)1,8/40Selenium (Se) - using GFAAS (Chemical 900/-)40/41Ca/Cd/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 500/-)1,8/42Na / K - using FLAAS (each) (Chemical 400/-)2,2/43Nickel (Ni) / Cobalt (each) (Chemical 1,000/-)3,0/44Mercury(Hg)-Cold Vapour Method (Mini. 30 days required) (Chemical 1200/-)4,0/45Cyanide (Cn) (Chemical 1000/-)2,5/47Total Organic Carbon (TOC) (Chemical 1000/-)9,0/48Dissolved Organic Carbon (DOC) (Chemical 1000/-)5,0/50Sodium Absorption Ratio (SAR) (Chemical 1000/-)5,0/51Langlier Saturation Index (Chemical 1000/-)5,0/53Aggressiveness / Corrosivity Index (Chemical 1000/-)			
28Total Phosphorous (TP) (Chemical 700/-) $3,7$ /29Orthophosphate (PO ₄) (Chemical 200/-) $1,0$ /30Hydrogen Sulphide (H ₂ S) / Odour (Chemical 200/-) 9 31Sulphate (SO ₄) (Chemical 200/-) 8 32Biochemical Oxygen Demand (BOD)-5 day (Chemical 400/-) $2,0$ 33Chemical Oxygen Demand (COD) (Chemical 600/-) $2,0$ 34Dissolved Oxygen (DO) (Chemical 400/-) 6 35Boron (B) (Chemical 1,200/-) $3,0$ 36Manganese (Mn): UV - VIS (Chemical 500/-) $1,8$ 37Aluminum (Al) (Chemical 500/-) $4,5$ 38Silver (Ag) (Chemical 500/-) $5,0$ 39Arsenic (As) - using GFAAS (Chemical 600/-) $1,8$ 40Selenium (Se) - using GFAAS (Chemical 900/-) 40 41Ca/Cd/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 500/-) $1,8$ 42Na / K - using FLAAS (each) (Chemical 1,000/-) $3,0$ 44Mercury(Hg)-Cold Vapour Method (Mini. 30 days required) (Chemical 1200/-) $4,0$ 45Cyanide (Cn) (Chemical 1000/-) $4,0$ 46Ferrous Iron/ Ferric Iron (Chemical 500/-) $2,5$ 47Total Organic Carbon (TOC) (Chemical 1000/-) $9,0$ 48Dissolved Organic Carbon (DOC) (Chemical 1000/-) $5,0$ 50Sodium Absorption Ratio (SAR) (Chemical 1000/-) $5,0$ 51Langlier Saturation Index (Chemical 1000/-) $5,0$ 53Aggressiveness / Corrosivity Index (Chemical 1000/-) $6,0$ 54Puckorius Scaling index (Chemi	_		
29Orthophosphate (PO4) (Chemical 200/-)1,030Hydrogen Sulphide (H2S) / Odour (Chemical 200/-)931Sulphate (SO4) (Chemical 200/-)832Biochemical Oxygen Demand (BOD)-5 day (Chemical 400/-)2,0033Chemical Oxygen Demand (COD) (Chemical 600/-)2,0034Dissolved Oxygen (DO) (Chemical 400/-)635Boron (B) (Chemical 1,200/-)3,0036Manganese (Mn): UV - VIS (Chemical 500/-)1,8837Aluminum (Al) (Chemical 500/-)4,5938Silver (Ag) (Chemical 500/-)5,0039Arsenic (As) - using GFAAS (Chemical 600/-)1,8840Selenium (Se) - using GFAAS (Chemical 900/-)40041Ca/Cd/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 500/-)1,8842Na / K - using FLAAS (each) (Chemical 400/-)2,2243Nickel (Ni) / Cobalt (each) (Chemical 1,000/-)3,0044Mercury(Hg)-Cold Vapour Method (Mini. 30 days required) (Chemical 1200/-)4,0045Cyanide (Cn) (Chemical 1000/-)2,5047Total Organic Carbon (TOC) (Chemical 1000/-)9,0048Dissolved Organic Carbon (DOC) (Chemical 1000/-)12,0050Sodium Absorption Ratio (SAR) (Chemical 1000/-)5,0051Langlier Saturation Index (Chemical 1000/-)6,0052Ryznar Index (Chemical 1000/-)6,0053Aggressiveness / Corrosivity Index (Chemical 1000/-)6,0054Puckorius Scaling index (Chemical 1000/-)6,00 <td>-</td> <td></td> <td></td>	-		
30Hydrogen Sulphide (H2S) / Odour (Chemical 200/-)9031Sulphate (SO4) (Chemical 200/-)8832Biochemical Oxygen Demand (BOD)-5 day (Chemical 400/-)2,0033Chemical Oxygen Demand (COD) (Chemical 600/-)2,0034Dissolved Oxygen (DO) (Chemical 400/-)6035Boron (B) (Chemical 1,200/-)3,0036Manganese (Mn): UV - VIS (Chemical 500/-)1,8837Aluminum (AI) (Chemical 500/-)4,5038Silver (Ag) (Chemical 500/-)5,0039Arsenic (As) - using GFAAS (Chemical 600/-)1,8840Selenium (Se) - using GFAAS (Chemical 900/-)40041Ca/Cd/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 500/-)1,8842Na / K - using FLAAS (each) (Chemical 400/-)2,2243Nickel (Ni) / Cobalt (each) (Chemical 1,000/-)3,0044Mercury(Hg)-Cold Vapour Method (Mini. 30 days required) (Chemical 1200/-)4,0045Cyanide (Cn) (Chemical 1000/-)2,5047Total Organic Carbon (TOC) (Chemical 1000/-)9,0048Dissolved Organic Carbon (DOC) (Chemical 1000/-)12,0050Sodium Absorption Ratio (SAR) (Chemical 1000/-)5,0051Langlier Saturation Index (Chemical 1000/-)6,0053Aggressiveness / Corrosivity Index (Chemical 1000/-)6,0054Puckorius Scaling index (Chemical 1000/-)6,00	_		1,00
31Sulphate (SO4) (Chemical 200/-)8832Biochemical Oxygen Demand (BOD)-5 day (Chemical 400/-)2.0033Chemical Oxygen Demand (COD) (Chemical 600/-)2.0034Dissolved Oxygen (DO) (Chemical 400/-)6635Boron (B) (Chemical 1,200/-)3.0036Manganese (Mn): UV - VIS (Chemical 500/-)1.8837Aluminum (AI) (Chemical 500/-)4.5538Silver (Ag) (Chemical 500/-)5.0039Arsenic (As) - using GFAAS (Chemical 600/-)1.8840Selenium (Se) - using GFAAS (Chemical 900/-)40041Ca/Cd/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 500/-)1.8842Na / K - using FLAAS (each) (Chemical 400/-)2.2243Nickel (Ni) / Cobalt (each) (Chemical 1,000/-)3.0044Mercury(Hg)-Cold Vapour Method (Mini. 30 days required) (Chemical 1200/-)4.0045Cyanide (Cn) (Chemical 1000/-)2.5547Total Organic Carbon (TOC) (Chemical 1000/-)9.0048Dissolved Organic Carbon (DOC) (Chemical 1500/-)12.0050Sodium Absorption Ratio (SAR) (Chemical 1000/-)5.0051Langlier Saturation Index (Chemical 1000/-)6.0053Aggressiveness / Corrosivity Index (Chemical 1000/-)6.0054Puckorius Scaling index (Chemical 1000/-)6.00	30		90
33 Chemical Oxygen Demand (COD) (Chemical 600/-) 2,0 34 Dissolved Oxygen (DO) (Chemical 400/-) 60 35 Boron (B) (Chemical 1,200/-) 3,00 36 Manganese (Mn): UV - VIS (Chemical 500/-) 1,80 37 Aluminum (Al) (Chemical 500/-) 4,50 38 Silver (Ag) (Chemical 500/-) 5,00 39 Arsenic (As) - using GFAAS (Chemical 600/-) 1,80 40 Selenium (Se) - using GFAAS (Chemical 900/-) 400 41 Ca/Cd/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 500/-) 1,80 42 Na / K - using FLAAS (each) (Chemical 400/-) 2,20 43 Nickel (Ni) / Cobalt (each) (Chemical 1,000/-) 3,00 44 Mercury(Hg)-Cold Vapour Method (Mini. 30 days required) (Chemical 1200/-) 4,00 45 Cyanide (Cn) (Chemical 1000/-) 2,50 47 Total Organic Carbon (TOC) (Chemical 1000/-) 9,00 48 Dissolved Organic Carbon (DOC) (Chemical 1000/-) 5,00 50 Sodium Absorption Ratio (SAR) (Chemical 1000/-) 5,00 51 Langlier Saturation Index (Chemical 1000/-) <td>31</td> <td>Sulphate (SO₄) (Chemical 200/-)</td> <td>80</td>	31	Sulphate (SO ₄) (Chemical 200/-)	80
34 Dissolved Oxygen (DO) (Chemical 400/-) 66 35 Boron (B) (Chemical 1,200/-) 3,00 36 Manganese (Mn): UV - VIS (Chemical 500/-) 1,8 37 Aluminum (Al) (Chemical 500/-) 4,50 38 Silver (Ag) (Chemical 500/-) 5,00 39 Arsenic (As) - using GFAAS (Chemical 600/-) 1,8 40 Selenium (Se) - using GFAAS (Chemical 900/-) 400 41 Ca/Cd/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 500/-) 1,8 42 Na / K - using FLAAS (each) (Chemical 400/-) 2,20 43 Nickel (Ni) / Cobalt (each) (Chemical 1,000/-) 3,00 44 Mercury(Hg)-Cold Vapour Method (Mini. 30 days required) (Chemical 1200/-) 4,00 45 Cyanide (Cn) (Chemical 1000/-) 2,50 46 Ferrous Iron/ Ferric Iron (Chemical 500/-) 2,50 47 Total Organic Carbon (TOC) (Chemical 1000/-) 9,00 48 Dissolved Organic Carbon (DOC) (Chemical 1500/-) 10,00 49 Silt Density Index (SDI) with Plugging (Chemical 500/-) 12,00 50 Sodium Absorption Ratio (SAR) (Chemical 10	32	Biochemical Oxygen Demand (BOD)-5 day (Chemical 400/-)	2,00
35Boron (B) (Chemical 1,200/-)3,0036Manganese (Mn): UV - VIS (Chemical 500/-)1,8037Aluminum (Al) (Chemical 500/-)4,5138Silver (Ag) (Chemical 500/-)5,0039Arsenic (As) - using GFAAS (Chemical 600/-)1,8040Selenium (Se) - using GFAAS (Chemical 900/-)40041Ca/Cd/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 500/-)1,8042Na / K - using FLAAS (each) (Chemical 400/-)2,2043Nickel (Ni) / Cobalt (each) (Chemical 1,000/-)3,0044Mercury(Hg)-Cold Vapour Method (Mini. 30 days required) (Chemical 1200/-)4,0045Cyanide (Cn) (Chemical 1000/-)2,5047Total Organic Carbon (TOC) (Chemical 1000/-)9,0048Dissolved Organic Carbon (DOC) (Chemical 1500/-)12,0050Sodium Absorption Ratio (SAR) (Chemical 1000/-)5,0051Langlier Saturation Index (Chemical 1000/-)6,0053Aggressiveness / Corrosivity Index (Chemical 1000/-)6,0054Puckorius Scaling index (Chemical 1000/-)6,00	33		2,00
36Manganese (Mn): UV - VIS (Chemical 500/-)1,837Aluminum (Al) (Chemical 500/-)4,538Silver (Ag) (Chemical 500/-)5,039Arsenic (As) - using GFAAS (Chemical 600/-)1,840Selenium (Se) - using GFAAS (Chemical 900/-)4041Ca/Cd/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 500/-)1,842Na / K - using FLAAS (each) (Chemical 400/-)2,243Nickel (Ni) / Cobalt (each) (Chemical 1,000/-)3,044Mercury(Hg)-Cold Vapour Method (Mini. 30 days required) (Chemical 1200/-)4,045Cyanide (Cn) (Chemical 1000/-)4,046Ferrous Iron/ Ferric Iron (Chemical 500/-)2,547Total Organic Carbon (TOC) (Chemical 1000/-)9,048Dissolved Organic Carbon (DOC) (Chemical 1500/-)12,050Sodium Absorption Ratio (SAR) (Chemical 1000/-)5,051Langlier Saturation Index (Chemical 1000/-)6,052Ryznar Index (Chemical 1000/-)6,053Aggressiveness / Corrosivity Index (Chemical 1000/-)6,054Puckorius Scaling index (Chemical 1000/-)6,0			60
37Aluminum (Al) (Chemical 500/-)4,5038Silver (Ag) (Chemical 500/-)5,0039Arsenic (As) - using GFAAS (Chemical 600/-)1,8040Selenium (Se) - using GFAAS (Chemical 900/-)40041Ca/Cd/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 500/-)1,8042Na / K - using FLAAS (each) (Chemical 400/-)2,2043Nickel (Ni) / Cobalt (each) (Chemical 1,000/-)3,0044Mercury(Hg)-Cold Vapour Method (Mini. 30 days required) (Chemical 1200/-)4,0045Cyanide (Cn) (Chemical 1000/-)2,5047Total Organic Carbon (TOC) (Chemical 1000/-)9,0048Dissolved Organic Carbon (DOC) (Chemical 1500/-)10,0049Silt Density Index (SDI) with Plugging (Chemical 500/-)5,0050Sodium Absorption Ratio (SAR) (Chemical 1000/-)5,0051Langlier Saturation Index (Chemical 1000/-)6,0052Ryznar Index (Chemical 1000/-)6,0053Aggressiveness / Corrosivity Index (Chemical 1000/-)6,0054Puckorius Scaling index (Chemical 1000/-)6,00	_		
38Silver (Ag) (Chemical 500/-)5,039Arsenic (As) - using GFAAS (Chemical 600/-)1,840Selenium (Se) - using GFAAS (Chemical 900/-)40041Ca/Cd/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 500/-)1,842Na / K - using FLAAS (each) (Chemical 400/-)2,2043Nickel (Ni) / Cobalt (each) (Chemical 1,000/-)3,0044Mercury(Hg)-Cold Vapour Method (Mini. 30 days required) (Chemical 1200/-)4,0045Cyanide (Cn) (Chemical 1000/-)4,0046Ferrous Iron/ Ferric Iron (Chemical 500/-)2,5547Total Organic Carbon (TOC) (Chemical 1000/-)9,0048Dissolved Organic Carbon (DOC) (Chemical 1500/-)10,0049Silt Density Index (SDI) with Plugging (Chemical 500/-)12,0050Sodium Absorption Ratio (SAR) (Chemical 1000/-)5,0051Langlier Saturation Index (Chemical 1000/-)6,0052Ryznar Index (Chemical 1000/-)6,0053Aggressiveness / Corrosivity Index (Chemical 1000/-)6,0054Puckorius Scaling index (Chemical 1000/-)6,00			
39Arsenic (As) - using GFAAS (Chemical 600/-)1,840Selenium (Se) - using GFAAS (Chemical 900/-)4041Ca/Cd/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 500/-)1,842Na / K - using FLAAS (each) (Chemical 400/-)2,243Nickel (Ni) / Cobalt (each) (Chemical 1,000/-)3,0044Mercury(Hg)-Cold Vapour Method (Mini. 30 days required) (Chemical 1200/-)4,0045Cyanide (Cn) (Chemical 1000/-)4,0046Ferrous Iron/ Ferric Iron (Chemical 500/-)2,5047Total Organic Carbon (TOC) (Chemical 1000/-)9,0048Dissolved Organic Carbon (DOC) (Chemical 1500/-)10,0049Silt Density Index (SDI) with Plugging (Chemical 500/-)12,0050Sodium Absorption Ratio (SAR) (Chemical 1000/-)5,0051Langlier Saturation Index (Chemical 1000/-)6,0052Ryznar Index (Chemical 1000/-)6,0053Aggressiveness / Corrosivity Index (Chemical 1000/-)6,0054Puckorius Scaling index (Chemical 1000/-)6,00			
40Selenium (Se) - using GFAAS (Chemical 900/-)40041Ca/Cd/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 500/-)1,8042Na / K - using FLAAS (each) (Chemical 400/-)2,2043Nickel (Ni) / Cobalt (each) (Chemical 1,000/-)3,0044Mercury(Hg)-Cold Vapour Method (Mini. 30 days required) (Chemical 1200/-)4,0045Cyanide (Cn) (Chemical 1000/-)4,0046Ferrous Iron/ Ferric Iron (Chemical 500/-)2,5047Total Organic Carbon (TOC) (Chemical 1000/-)9,0048Dissolved Organic Carbon (DOC) (Chemical 1500/-)10,0049Silt Density Index (SDI) with Plugging (Chemical 500/-)12,0050Sodium Absorption Ratio (SAR) (Chemical 1000/-)5,0051Langlier Saturation Index (Chemical 1000/-)6,0053Aggressiveness / Corrosivity Index (Chemical 1000/-)6,0054Puckorius Scaling index (Chemical 1000/-)6,00			1,80
41Ca/Cd/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 500/-)1,8042Na / K - using FLAAS (each) (Chemical 400/-)2,2043Nickel (Ni) / Cobalt (each) (Chemical 1,000/-)3,0044Mercury(Hg)-Cold Vapour Method (Mini. 30 days required) (Chemical 1200/-)4,0045Cyanide (Cn) (Chemical 1000/-)4,0046Ferrous Iron/ Ferric Iron (Chemical 500/-)2,5047Total Organic Carbon (TOC) (Chemical 1000/-)9,0048Dissolved Organic Carbon (DOC) (Chemical 1500/-)10,0049Silt Density Index (SDI) with Plugging (Chemical 500/-)12,0050Sodium Absorption Ratio (SAR) (Chemical 1000/-)5,0051Langlier Saturation Index (Chemical 1000/-)6,0052Ryznar Index (Chemical 1000/-)6,0053Aggressiveness / Corrosivity Index (Chemical 1000/-)6,0054Puckorius Scaling index (Chemical 1000/-)6,00			400
43Nickel (Ni) / Cobalt (each) (Chemical 1,000/-)3,044Mercury(Hg)-Cold Vapour Method (Mini. 30 days required) (Chemical 1200/-)4,045Cyanide (Cn) (Chemical 1000/-)4,046Ferrous Iron/ Ferric Iron (Chemical 500/-)2,547Total Organic Carbon (TOC) (Chemical 1000/-)9,048Dissolved Organic Carbon (DOC) (Chemical 1500/-)10,0049Silt Density Index (SDI) with Plugging (Chemical 500/-)12,0050Sodium Absorption Ratio (SAR) (Chemical 1000/-)5,0051Langlier Saturation Index (Chemical 1000/-)6,0052Ryznar Index (Chemical 1000/-)6,0053Aggressiveness / Corrosivity Index (Chemical 1000/-)6,0054Puckorius Scaling index (Chemical 1000/-)6,00	41		1,80
44Mercury(Hg)-Cold Vapour Method (Mini. 30 days required) (Chemical 1200/-)4,045Cyanide (Cn) (Chemical 1000/-)4,046Ferrous Iron/ Ferric Iron (Chemical 500/-)2,547Total Organic Carbon (TOC) (Chemical 1000/-)9,048Dissolved Organic Carbon (DOC) (Chemical 1500/-)10,049Silt Density Index (SDI) with Plugging (Chemical 500/-)12,050Sodium Absorption Ratio (SAR) (Chemical 1000/-)5,051Langlier Saturation Index (Chemical 1000/-)6,052Ryznar Index (Chemical 1000/-)6,053Aggressiveness / Corrosivity Index (Chemical 1000/-)6,054Puckorius Scaling index (Chemical 1000/-)6,0	-		2,20
45Cyanide (Cn) (Chemical 1000/-)4,046Ferrous Iron/ Ferric Iron (Chemical 500/-)2,547Total Organic Carbon (TOC) (Chemical 1000/-)9,048Dissolved Organic Carbon (DOC) (Chemical 1500/-)10,049Silt Density Index (SDI) with Plugging (Chemical 500/-)12,050Sodium Absorption Ratio (SAR) (Chemical 1000/-)5,051Langlier Saturation Index (Chemical 1000/-)6,052Ryznar Index (Chemical 1000/-)6,053Aggressiveness / Corrosivity Index (Chemical 1000/-)6,054Puckorius Scaling index (Chemical 1000/-)6,0			3,00
46Ferrous Iron/ Ferric Iron (Chemical 500/-)2,5047Total Organic Carbon (TOC) (Chemical 1000/-)9,0048Dissolved Organic Carbon (DOC) (Chemical 1500/-)10,0049Silt Density Index (SDI) with Plugging (Chemical 500/-)12,0050Sodium Absorption Ratio (SAR) (Chemical 1000/-)5,0051Langlier Saturation Index (Chemical 1000/-)6,0052Ryznar Index (Chemical 1000/-)6,0053Aggressiveness / Corrosivity Index (Chemical 1000/-)6,0054Puckorius Scaling index (Chemical 1000/-)6,00	_		
47Total Organic Carbon (TOC) (Chemical 1000/-)9,048Dissolved Organic Carbon (DOC) (Chemical 1500/-)10,049Silt Density Index (SDI) with Plugging (Chemical 500/-)12,050Sodium Absorption Ratio (SAR) (Chemical 1000/-)5,051Langlier Saturation Index (Chemical 1000/-)6,052Ryznar Index (Chemical 1000/-)6,053Aggressiveness / Corrosivity Index (Chemical 1000/-)6,054Puckorius Scaling index (Chemical 1000/-)6,0	-		2,50
48Dissolved Organic Carbon (DOC) (Chemical 1500/-)10,049Silt Density Index (SDI) with Plugging (Chemical 500/-)12,050Sodium Absorption Ratio (SAR) (Chemical 1000/-)5,051Langlier Saturation Index (Chemical 1000/-)6,052Ryznar Index (Chemical 1000/-)6,053Aggressiveness / Corrosivity Index (Chemical 1000/-)6,054Puckorius Scaling index (Chemical 1000/-)6,0	-		9,00
49Silt Density Index (SDI) with Plugging (Chemical 500/-)12,050Sodium Absorption Ratio (SAR) (Chemical 1000/-)5,051Langlier Saturation Index (Chemical 1000/-)6,052Ryznar Index (Chemical 1000/-)6,053Aggressiveness / Corrosivity Index (Chemical 1000/-)6,054Puckorius Scaling index (Chemical 1000/-)6,0	-		10,00
51Langlier Saturation Index (Chemical 1000/-)6,052Ryznar Index (Chemical 1000/-)6,053Aggressiveness / Corrosivity Index (Chemical 1000/-)6,054Puckorius Scaling index (Chemical 1000/-)6,0	49	Silt Density Index (SDI) with Plugging (Chemical 500/-)	12,00
52Ryznar Index (Chemical 1000/-)6,053Aggressiveness / Corrosivity Index (Chemical 1000/-)6,054Puckorius Scaling index (Chemical 1000/-)6,0	-		5,00
53Aggressiveness / Corrosivity Index (Chemical 1000/-)6,054Puckorius Scaling index (Chemical 1000/-)6,0			6,00
54Puckorius Scaling index (Chemical 1000/-)6,0			
		•	
	55		0,00
	- 1	Eacol Caliform (EC) / Total Caliform (TC) (aach) (Chamical EOO/)	1 4

Notes :		1 Fecal Coliform (FC) / Total Coliform (TC) (each) (Chemical 500/-) 1,40					
Sampling charge may vary depending on the area to be sampled		2 E. Coli (Chemical 1500/-) 4,00					
^ Cost depends on the client's requirements		3 Algae / Chlorophyll_a (Chemical 1500/-) 11,00					
* Usual field visit fees apply in addition to above							
Notes: [* Field visit fee; Inside Dhaka City = Tk. 15,000; Outside Dhaka City (No overnight stay) = Tk. 25,000; Near Districts = Tk. 38,000 without overnight stay							
and Tk. 30,000 per day for overnight stay; Farthest Districts = Tk. 50,000 without overnight stay and Tk. 40,000 per day for overnight stay, Remote Areas with							
overnight stay = Tk. 45,000 per day] [* & Transport, local hospitalities, accomme	odati	tion (in case of overnight stay) etc. are to be provided by the Client]					

S.P.C. = Sample Preparation Charge. For one trial only using client's supplied sample. However, if design is to be performed by BRTC, BUET item at least 3 trial cost should be borne by the client.

SI. No.	Name of Tests	Test Rate (Tk.)	SI. No	Name of Tests	Test Ra (Tk.)
110.	Miscellaneous Wastewater/Effluent Quality Parameter			Miscellaneous Saline Water (EC > 5mS/cm) Quality Para	
1	pH (Chemical 200/-)	600	1	pH (Chemical 200/-)	
2	Colour (True or Apparent) (Chemical 200/-)	800	2	Colour (True or Apparent) (Chemical 200/-)	
3	Colour Scanning at Specific Wavelength/UV-VIS Range (Chemical 200/-)	2,500	3	Colour Scanning at Specific Wavelength/UV-VIS Range (Chemical 200/-)	
4	Turbidity (Chemical 200/-)	700	4	Turbidity (Chemical 150/-)	
5	P-Alkalinity/ M-Alkalinity/T-Alkalinity (Chemical 200/-)	800	5	Carbon-di-Oxide (CO ₂) / Acidity (Chemical 200/-)	
6	Carbonate (CO ₃) or Bi-carbonate (HCO ₃) + pH (Chemical 200/-)	1,000	6	P-Alkalinity/ M-Alkalinity/T-Alkalinity (Chemical 200/-)	
7	Total Hardness (Chemical 300/-)	1,300	7	Carbonate (CO ₃) or Bi-carbonate (HCO ₃) + pH (Chemical 200/-)	
8	Ca - Hardness (Chemical 800/-)	3,500	8	Total Hardness (Chemical 500/-)	
	Mg - Hardness (Chemical 800/-)	3,500	9	Chloride (Cl) (Chemical 500/-)	
10	Chloride (Cl) (Chemical 250/-)	1,200	10	Fluoride (F) (Chemical 500/-)	
11	Fluoride (F) (Chemical 100/-)	900	11	Ammonia-Nitrogen (NH ₃ - N) (Chemical 800/-)	
	Ammonia-Nitrogen (NH ₃ - N) (Chemical 400/-)	1,500	12	Nitrate - Nitrogen (NO ₃ - N) (Chemical 500/-)	
	Nitrate - Nitrogen (NO ₃ - N) (Chemical 250/-)	1,000	-	Nitrite - Nitrogen (NO ₂ - N) (Chemical 500/-)	
	Nitrite - Nitrogen (NO ₂ - N) (Chemical 250/-)	1,000		Total Nitrogen (TN) (Chemical 2000/-)	1
	Total Nitrogen (TN) (Chemical 1500/-)	5,500		Total Kjeldahl Nitrogen (TKN) / Organic Nitrogen (Chemical	1
	Total Kijeldahl Nitrogen (TKN) / Organic Nitrogen (Chemical 3000/-)	16,000		Chlorine Content - Total Cl ₂ (Chemical 300/-)	
	Chlorine Content - Total Cl ₂ (Chemical 250/-)	900		Chlorine Content - Free Cl ₂ (Chemical 300/-)	
	Chlorine Content - Free Cl ₂ (Chemical 250/-)	900		Iodine Content (Chemical 300/-)	
	Iodine Content (Chemical 200/-)	900			
	Bromine Content (Chemical 200/-)	900	20	Total Solids (TS) (Chemical 200/-)	
	Total Solids (TS) (Chemical 100/-) Total Suspended Solids (TSS)/Insoluble Solids/(TSS+TDS+TS) (Chemical 500/-)	1,200 2,400	21 22	Total Suspended Solids (TSS)/Insoluble Solids/(TSS+TDS+TS) (Chemical 500/-)	
				Total Dissolved Solids (TDS) (Chemical 200/-) Silica Content (SiO ₂) (Chemical 500/-)	
	Total Dissolved Solids (TDS) (Chemical 500/-)	1,200			
	Silica Content (SiO ₂) (Chemical 400/-)	1,600		Electrical Conductivity (EC) (Chemical 500/-)	
	Electrical Conductivity (EC) (Chemical 350/-)	1,000			
	Total Phosphorous (TP) (Chemical 700/-)	4,000		Orthophosphate (PO ₄) (Chemical 300/-)	
	Orthophosphate (PO ₄) (Chemical 200/-)	1,200		Hydrogen Sulphide (H ₂ S) / Odour (Chemical 300/-)	
28	Hydrogen Sulphide (H ₂ S) / Odour (Chemical 200/-)	1,000	28	Sulphate (SO ₄) (Chemical 300/-)	
29	Sulphate (SO ₄) (Chemical 200/-)	1,000	29	Biochemical oxygen Demand (BOD) - 5 day (Chemical 500/-)	
30	Organic Matter (Chemical 300/-)	3,800	30	Chemical Oxygen Demand (COD) (Chemical 600/-)	
31	Inorganic Matter (Chemical 300/-)	2,100	31	Dissolved Oxygen (DO) (Chemical 400/-)	
32	Biochemical oxygen Demand (BOD) - 5 day (Chemical 400/-)	2,400	32	Boron (B) (Chemical 1200/-)	
	Chemical Oxygen Demand (COD) (Chemical 500/-)	2,400		Aluminum (Al) (Chemical 500/-)	
	Dissolved Oxygen (DO) (Chemical 400/-)	1,000		Silver (Ag) (Chemical 500/-)	
	Boron (B) (Chemical 1200/-)	3,500		Arsenic (As) - using GFAAS (Chemical 800/-)	
	Aluminum (Al) (Chemical 500/-)	5,000		Selenium (Se) - using GFAAS / Ba (each) (Chemical 1000/-)	
	Silver (Ag) (Chemical 500/-)	5,500		Ca/Cd/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 1000/-)	
	Arsenic (As) - using GFAAS (Chemical 600/-)	2,000		Na / K - using FLAAS (each) (Chemical 1000/-)	
	Selenium (Se) - using GFAAS / Ba (each) (Chemical 900/-)	4500		Mercury(Hg)-Cold Vapour Method (Mini. 30 days required) (Chemical 1500/-)	
	Ca/Cd/Cr/Cu/Fe/Mg/Mn/Ni/Pb/Zn - using FLAAS (each) (Chemical 500/-)	2,000	40	Total Organic Carbon (TOC) (Chemical 1000/-)	1
	Na / K - using FLAAS (each) (Chemical 400/-)	3,500	41	Dissolved Organic Carbon (DOC) (Chemical 1500/-)	1
	Total Organic Carbon (TOC) (Chemical 1000/-) Dissolved Organic Carbon (DOC) (Chemical 1500/-)	10,000			
40		11,000	\vdash	BACTERIOLOGICAL ANALYSIS	
	BACTERIOLOGICAL ANALYSIS		1	Fecal Coliform (FC) / Total Coliform (TC) (each) (Chemical 1500/-)	
1	Fecal Coliform (FC) / Total Coliform (TC) (each) (Chemical 500/-)	2,000	2	E. Coli (Chemical 1500/-)	
	Algae / Chlorophyll_a (Chemical 1500/-)	12,000	3	Algae / Chlorophyll_a (Chemical 1500/-)	1

1 On-Site Measurement (pH, EC, DO, Turbidity) 2 Solid & Organic Content (TS, TDS, TSS, VS, Fixed Solid, VSS, MC, COD, SCOD, BOD 3 Nutrient Contents (TN, NH3, NO2, NO3, TKN, TP, PO4 4 Anaerobic Disgestion related (Fe, Zn, Ni, Pb, VFA) 5 Detecames (F, Cali, EC, Helmoinths and Salmanalla, Enterpresention)	FECAL SLUDGE ANALYSIS							
2 MC, COD, SCOD, BOD Please contact us 3 Nutrient Contents (TN, NH3, NO2, NO3, TKN, TP, PO4 Please contact us 4 Anaerobic Disgestion related (Fe, Zn, Ni, Pb, VFA) Please contact us	1	On-Site Measurement (pH, EC, DO, Turbidity)						
 3 Nutrient Contents (TN, NH3, NO2, NO3, TKN, TP, PO4 4 Anaerobic Disgestion related (Fe, Zn, Ni, Pb, VFA) 	2		Diago contact up					
· · · · · · · · · · · · · · · · · · ·	3	Nutrient Contents (TN, NH3, NO2, NO3, TKN, TP, PO4						
E Datagonas (E. Cali, EC. Holmoinths agg. Salmonolla, Enterosocci)	4	Anaerobic Disgestion related (Fe, Zn, Ni, Pb, VFA)						
5 Palogenes (E. Coll, FC, Heimeintins egg, Saimonella, Enterococci)	5	Patogenes (E. Coli, FC, Helmeinths egg, Salmonella, Enterococci)						

Notes: [* Field visit fee; Inside Dhaka City = Tk. 15,000; Outside Dhaka City (No overnight stay) = Tk. 25,000; Near Districts = Tk. 38,000 without overnight stay and Tk. 30,000 per day for overnight stay; Farthest Districts = Tk. 50,000 without overnight stay and Tk. 40,000 per day for overnight stay, Remote Areas with

overnight stay = Tk. 45,000 per day] [* & Transport, local hospitalities, accommodation (in case of overnight stay) etc. are to be provided by the Client] S.P.C. = Sample Preparation Charge. For one trial only using client's supplied sample. However, if design is to be performed by BRTC, BUET item at least 3 trial cost should be borne by the client.

Page 7 of 6

Test Rate (Tk.)

> 600 1,000 2,500

> > 700

600

900

1,100 2,200 2,500 2,500

3,500

2,500

2,500 12,000

17,000

1,500

1,500 1,500 1,500 1,800

3,500

1,800 2,500

1,600 4,000 2,000

1,500 1,500 3,600

4,600

1,000 4,500 5,500 6,000

3,500

5,000

4000

5,500

8,000 11,000

13,000

2,500 6,500 13,500

SI.	Name of Tasks	Test Rate	SI.	Name of Tasks	Test Rate				
No.		(Tk.)	No		(Tk.)				
	GRP Board Sandwich Panel	5.400	_	Non-Asbestos Fibre-Cement Board					
	Tensile Strength (5 Nos. from each Sample)	5,100	1	Modulus of Rupture (6" X 12")					
2	Tensile Modulus (5 Nos. from each Sample) Flexural Strength (127 mm x 12.7 mm x 3.2mm; 5 Nos.)	13,200 5,100		2 Nos. Parallel to Fibre Lay from Same Sheet (S.P.C. 900/-) 2 Nos. Perpendicular to Fibre Lay from Same Sheet	7,900				
4	Flexural Modulus (100 mm x 10 mm x 4mm; 5 Nos.)	13,200	2	Modulus of Elasticity (6" X 12")					
-	Impact Strength (5 Nos. from each Sample)	5,100	2	2 Nos. Parallel to Fibre Lay from Same Sheet (S.P.C. 900/-)					
_	Water Absorption (76.2 mm x 25.4 mm x 6mm; 3 Nos.)	3,400		2 Nos. Parpendicular to Fibre Lay from Same Sheet	14,700				
			3	Density (from MOR Test)	2,500				
			4	Size & Shape (5 Nos.)	3,400				
			5	Water Absorption (4" X 4"; 3 Nos. from Per Sheet) (S.P.C. 700/-)	3,500				
	Consultancy on Pile Integrity		6	Moisture Content (from MOR Test)	3,400				
	Per Pile (see conditions a,b,c)		7	Water Tightness (24" X 20"; 3 Nos. One from each Sheet) (S.P.C. 700/-)	11,000				
	(a) Minimum total fees: within Dhaka City - 75,000/- ; Outside		8	pH Value (from MOR Test)	1,300				
	Dhaka City 1,15,000/-; Near Districts 1,50,000/- and Farthest		9	Heat & Rain Wall Structures (5' X 4'; 2 Nos.; One from each Sheet)	33,400				
	Districts 1,75,000/-	3,000 + *	-	Consultancy on Axial Pile Load Capacity					
	(b) Integrity tests be done on all piles for a structure(c) Pile load test be done on at least 1% of piles selected on the			Test Supervision & Report (per pile):					
	basis of integrity results			Minimum total fees: within Dhaka City Tk. 1,35,000/-; Outside	1,07,000 + *				
				Dhaka City 1,75,000; Near Districts, Tk. 2,25,000/- and Farthest	1,07,000 +				
				Districts Tk. 2,50,000/-					
	Var	ious Consu	Itanc	cy Services					
1	Land Survey (Plannimetric/Topographic/Contour) by Total S	Station and GPS	S						
2	Cost Estimation of Civil Structures								
3	Asset Evaluation of Civil Structures/Industries/Properties								
1	Design of Building, Bridges, Airport, Offshore Structures, Dr		res etc						
2	Structural Evaluation of Old Civil Structures without Drawing	gs/Records							
3	Quality Assurance (QA) of Civil Structures / Flat								
4	Certification on Structural Stability of Civil Structures								
6	Design Checking of various Concrete and Steel Structures								
7	Investigation of Civil Engineering Projects Assessment of Safety for Old Structures								
8	Assessment of Safety for Old Structures Strengthening of Existing Structures								
1	Environmental Site Assessment (e.g. for LPG plants, Power plants)								
2	Environmental Impact Assessment (EIA) of Civil Engineering Projects								
3	Environmental Monitoring of Civil Engineering Projects								
4	Design of Solid Waste Disposal Systems								
5	Design of Water and Wastewater Treatment Systems								
6 7	Design of Iron Removal Plants Plumbing and Sewer Systems Design								
8	Plumbing and Sewer Systems Design Solid, Hazardous and Industrial Waste Management and Pollution Control								
9	Design of Water Supply System								
10									
1	Design and Analysis of Shallow and Deep Foundations								
2	Design and Analysis of Embankments								
3	Design and Analysis of Earth Retaining Structures								
4	Planning of Soil Investigation Programs								
5	Planning and Design of Soil Improvement Schemes								
6	Seismic Design of Foundation Seismic Hazard Analysis								
7	Seismic Hazard Analysis Microzonation Maps								
1	Transportation Impact Assessment (TIA) of Civil Engineering Projects								
2	Traffic Studies (Volume, O-D, Speed, Delay, Parking etc.)								
3	Traffic Forecasting								
4	Geometric and Structural Design of Pavements, Parking Lots etc.								
5	Planning and Design of Inland Container Terminal/Depot (ICT / ICD)								
6	Planning and Design of Airport Terminal								
7	Design of Runway Pavement								
8	Design of Road/Highways/Bridge/Culverts								
9	Planning and Design of Flyover / Underpass / Interchange								
10									
	11 Development of Transportation Model 12 Training on Traffic Studies								
12	12 Training on Traffic Studies, Traffic Management, Transportation Planning, Traffic Safety								

Notes: [* Field visit fee; Inside Dhaka City = Tk. 15,000; Outside Dhaka City (No overnight stay) = Tk. 25,000; Near Districts = Tk. 38,000 without overnight stay and Tk. 30,000 per day for overnight stay; Farthest Districts = Tk. 50,000 without overnight stay and Tk. 40,000 per day for overnight stay, Remote Areas with overnight stay = Tk. 45,000 per day] [* & Transport, local hospitalities, accommodation (in case of overnight stay) etc. are to be provided by the Client] S.P.C. = SSample Preparation Charge. For one trial only using client's supplied sample. However, if design is to be performed by BRTC, BUET item at least 3 trial cost should be borne by the client.