OBE Curriculum for the Undergraduate Program of the Department of Civil Engineering, BUET

Department of Civil Engineering, BUET November 2022 **Published by:** Department of Civil Engineering Bangladesh University of Engineering and Technology Dhaka 1000, Bangladesh.

Editorial Committee:

Prof. Dr. Md. Delwar Hossain (Head of Department) Prof. Dr. Ishtiaque Ahmed Prof. Dr. Rowshan Mamtaz Dr. Sheikh Mokhlesur Rahman Sumaiya Afrose Suma Sk. Rakibul Islam Saidis Salekin Aninda Tazwar Bakhtiyar Zahid Mahbubah Ahmed Md. Amin Al Noor Nishatee Binte Shahid Subashish Kundu Sunny Ranjan Roy Bappy

DISCLAIMER

The Department of Civil Engineering and the Bangladesh University of Engineering and Technology (BUET) reserve the right to make, at any time without notice, changes in and addition any information or statement contained in this booklet. No responsibility will be accepted by the University or the Department of Civil Engineering for hardship or expenses encountered by its students or any other person or persons because of such changes

Version: 1.0, Dated: 14/11/2022

PREFACE

It gives me great pleasure to publish the booklet on Outcome Based Education (OBE) course curriculum for undergraduate studies of the Department of Civil Engineering.

I would like to express my thanks and gratitude to all my colleagues of the Department. Members of the OBE Cell, specifically Dr. Ishtiaque Ahmed, Dr. Sheikh Mokhlesur Rahman, ands Ranjan Roy Bappy also deserve special thanks for their all-out effort and help in different stages of preparation of this booklet. I also thank the Lecturers of the department who helped to prepare the description of the courses.

This booklet presents the rules and regulations of the course system and course requirements and contents of the Department of Civil Engineering. Salient features of OBE-based curriculum is also included in the document. It is an essential companion for students of this Department as well as their advisers for smoothly carrying out their academic activities.

As with the practice of any Course System, it is likely that some of the rules and regulations published in this booklet may be modified in future. Students are, therefore, strongly advised to be in touch with their Advisers regarding modifications, if any, that may be introduced by the university.

It is hoped that the information provided in this booklet will be useful to the Advisers and undergraduate students of the Department of Civil Engineering.

Dhaka November 2022

Dr. Md. Delwar Hossain Professor and Head Department of Civil Engineering, BUET

Table of Contents

PREFACE0
PART A: Overview of the Program
2. Mission of BUET
3. Title of the Academic Program/Degree1
4. Name of the Department
5. Vision of the Department
6. Mission of the Department1
7. Description of the Program1
8. Program Educational Objectives (PEOs)2
9. Mapping mission of BUET with the mission of the Department
10. Mapping missions of the Department with the PEOs
11. Program Outcomes (PO)3
12. Mapping of PEOs with POs4
PART B: Overview of the Curriculum
13.1 Admission Requirements:
13.2 Duration of the Program:
13.3 Total minimum credit requirement to complete the program:
13.4 Total class weeks in a Term:
13.5 Minimum CGPA requirements for graduation:
14. Course requirements for the B.Sc. Engg. (Civil) Degree Program
15. Courses offered in Different Term10
16. Course wise Content as approved by the Academic Council14
17. Mapping of POs with course outcomes (COs) of all offered courses35
PART C: Detailed Description of Courses with outcome mapping
19. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities
20. Description of all courses of the program54
Annex A: Definition of terms295
Annex B: List of program outcomes296
Annex C: Domains and Taxonomy Levels297
Annex D: Format of the Course Outline

Outcome Based Education (OBE) Curriculum

Department of Civil Engineering Bangladesh University of Engineering and Technology (BUET)

PART A: Overview of the Program

1. Vision of BUET

To be a leader in education, research and innovation in science, engineering and technology for sustainable future.

2. Mission of BUET

- To provide advanced transformative education, promote cutting-edge research, and foster innovation for producing competent graduates with ethical values.
- To create an inspiring, diverse and inclusive learning environment for planning, design and innovation.
- To enhance collaboration for improving knowledge and skill ensuring lifelong learning opportunity.
- To contribute towards reshaping for wellbeing of the society.

3. Title of the Academic Program/Degree

B.Sc. in Civil Engineering

4. Name of the Department

Department of Civil Engineering Bangladesh University of Engineering and Technology (BUET). In deciding the mission and vision, it was considered that BUET is a government funded institution and an apex technical university in the country. Also as the trend goes, every year the brightest student of the country take admission in this institution. Therefore, the mission and vision should reflect the nation's expectation and also should be compatible with the potential of the students. With these considerations, the following mission and vision statements have been adopted respectively for the department.

5. Vision of the Department

To be the leading Civil Engineering program through quality education and research to enable innovation and excellence for addressing national and global challenges.

6. Mission of the Department

Provide high-quality education and pursue innovative research in Civil Engineering to ensure state-of-the-art solutions addressing the needs of society, profession and the nation. The mission statement can be divided into the following three major parts:

- 1. Educational Excellence
- 2. Advanced Research
- 3. Serving Society Needs

7. Description of the Program

Bangladesh University of Engineering and Technology (BUET) is known for its commitment to be the best when it comes to providing higher education in engineering and with it, comes one of the largest and oldest departments in the university – the Department of Civil Engineering. This department is known to provide the best curriculum for both the Undergraduate and Post-graduate students. This is possible due to the strong and highly cooperative faculty, homing about 50 PhD

holders and other aspiring figures as teachers and mentors. This department is also providing the best labs for all the four majors: Structural Engineering, Geotechnical Engineering, Environmental Engineering and Transportation Engineering, kept under the supervision of senior Professors with the help of highly skilled and experienced lab assistants. This is a leading academic department in the country due to the outstanding graduates it is producing, its various research activities and its extensive involvements in countless important national development projects. The Alumni of this department are achieving great heights on a regular manner all around the country and abroad, which speak about the excellence of the Department of Civil Engineering.

8. Program Educational Objectives (PEOs)

Program Educational Objectives (PEOs) are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve. PEOs are assessable based on the attributes and accomplishments of graduates, preferably those who have worked for 3 to 5 years after graduation. Each engineering program should have published PEOs that are clear, concise, assessable and realistic within the context of the available resources. The PEOs should be consistent with the vision and mission of the department offering the program. They should be supported by a curriculum and teaching-learning processes that lead to the attainment of these objectives. Justifications should be provided for how the curriculum and the outcomes contribute to the attainment of the PEOs. A process should be developed to assess the level of attainment of each PEO to evaluate the academic program's effectiveness. Adequate evidence and documentation on the assessment of PEO attainment should be provided. The assessment tools should be indicated, and the way in which these tools are used should be explained. PEO assessment should lead to the periodic review of PEOs. Feedback from the various program stakeholders, including employers, alumni, students and faculty, should be considered during the review.

Following are the five PEOs of the undergraduate Civil Engineering program:

PEO 1: Graduates will attain a high level of technical expertise so that they are able to succeed in positions in civil engineering practice or research, and in other fields they choose to pursue.

PEO 2: Graduates will develop engineering designs that are based on sound principles and that consider functionality, aesthetics, safety, cost effectiveness and sustainability with professional ethics.

PEO 3: Graduates will practice lifelong learning through professional education.

PEO 4: Graduates will play a constructive role in addressing societal needs.

PEO 5: Graduates will be leaders, both in their chosen profession and in other activities.

mapping mission of DOLT with the mission of the Deput thent					
	BUET Mission 1	BUET Mission 2	BUET Mission 3	BUET Mission 4	
Department Mission 1	\checkmark				
Department Mission 2	\checkmark		\checkmark		
Department Mission 3		\checkmark		\checkmark	

9. Mapping mission of BUET with the mission of the Department

10. Mapping missions of the Department with the PEOs

Note: If required add /delete columns or rows

PEOs	Mission Part 1	Mission Part 2	Mission Part 3
PEO 1	\checkmark	\checkmark	
PEO 2	\checkmark	\checkmark	\checkmark
PEO 3	\checkmark		
PEO 4			\checkmark
PEO 5	\checkmark		\checkmark

11. Program Outcomes (PO)

The teaching methods in the department revolve around the program outcome set by the department. The department follows the following program outcomes for its undergraduate programs:

PO1-Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.

PO2-Problem analysis: Identify, formulate, research and analyze complex engineering problems and reach substantiated conclusions using the principles of mathematics, the natural sciences and the engineering sciences.

PO3- Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety and of cultural, societal and environmental concerns.

PO4- Investigation: Conduct investigations of complex problems, considering experimental design, data analysis and interpretation and information synthesis to provide valid conclusions.

PO5-Modern tool usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools, including prediction and modeling, to complex engineering activities with an understanding of their limitations.

PO6-The engineer and society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.

PO7-Environment and sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.

PO8-Ethics: Apply ethical principles and commit to the professional ethics, responsibilities and the norms of the engineering practice.

PO9-Individual work and teamwork: Function effectively as an individual and as a member or leader of diverse teams and in multidisciplinary settings.

PO10- Communication: Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.

PO11-Project management and finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to one's work as a team member or a leader to manage projects in multidisciplinary environments.

PO12-Life-long learning: Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the broadest context of technological change

12. Mapping of PEOs with POs

Note: If required add /delete columns or rows

POs	PEO 1	PEO 2	PEO 3	PEO 4	PEO 5
PO 1	\checkmark				
PO 2		\checkmark			
PO 3		\checkmark			
PO 4	\checkmark				
PO 5	\checkmark				
PO 6				\checkmark	\checkmark
PO 7		\checkmark	\checkmark		
PO 8		\checkmark			
PO 9					\checkmark
PO 10				\checkmark	
PO 11		\checkmark			
PO 12			\checkmark		

PART B: Overview of the Curriculum

13. Structure of the Curriculum

13.1 Admission Requirements:

Students are be admitted in undergraduate curricula in the Departments of Architecture, Urban and Regional Planning, Chemical Engineering, Civil Engineering, Water Resources Engineering, Computer Science and Engineering, Electrical and Electronic Engineering, Biomedical Engineering Mechanical Engineering, Industrial & Production Engineering, Materials and Metallurgical Engineering and Naval Architecture and Marine Engineering as per existing rules of the University. The Registrar's Office serve as the Admission Office.

13.2 Duration of the Program:

Years: 4 Semesters: 8

13.3 Total minimum credit requirement to complete the program:

Minimum credit hour requirements for the award of Bachelor's degree in engineering and architecture is proposed by the BUGS and approved by the Academic Council. However, at least 157 credit hours for engineering and 190 credit hours for architecture must be earned to be eligible for graduation, and this must include the specified core courses. Total credit hours requirement for B.Sc. in Civil Engineering degree is 161.

13.4 Total class weeks in a Term:

There will be two terms (Term I and Term II) in an academic year. The duration of each Term will be 18 weeks which will be used as follows:

Classes	14 weeks
Recess before term final exam	02 weeks
Term final exam	02 weeks
Total	18 weeks

13.5 Minimum CGPA requirements for graduation:

The minimum GPA requirement for obtaining a bachelor's degree in engineering, URP or architecture is 2.20.

13.6 Maximum academic years of completion: 04 Years

14. Course requirements for the B.Sc. Engg. (Civil) Degree Program 14.1 BASIC SCIENCES

Requirement 12 credits (9+3)				
Theoretical				
*PHY 101	Physical Optics, Waves and Oscillation, Heat and	3 credits		
	Thermodynamics			
Phy 151	Structure of Matter, Electricity and Magnetism and	3 credits		
	Modern Physics	Prereq. Phy 101		
* Chem 103	Chemistry I	Chemistry I		
Chem 105	Chemistry II	3 credits		
		Prereq. Chem 103		
Sessional				
* Phy 102	Physics Laboratory	1.5 credits		
* Chem 114	Inorganic Quantitative Analysis	1.5 credits		
* Compuls				

* Compulsory 14.2 Mathematics

Requirement 9 Credits (9+0)				
Theoretical				
* Math 137	Differential and Integral Calculus, Matrices	3 credits		
* Math 139	Differential Equations and Statistics	3 credits		
* Math 237	Laplace Transform and Vector Analysis	3 credits		

* Compulsory 14.3 Humanities and Social Sciences

14.3 Humanities and Social Sciences			
	Requirement 9.5 Credits (8+1.5)		
Theoretical			
* Hum 185	English	2 credits	
* Hum 217	Engineering Economics	2 credits	
* Hum 353	Accounting	2 credits	
Hum 355	Sociology	2 credits	
Hum 375	Government	2 credits	
Sessional			
* Hum 274	Developing English Language Skills	1.5 credits	
* Cammul			

* Compulsory 14.4 BASIC ENGINEERING

	Requirement 48 Credits (30+18)	
Theoretical		
* CE 101	Analytic Mechanics	3 credits
* CE 103	Surveying	4 credits
* EEE 165	Basic Electrical Technology	3 credits
* CE 201	Engineering Materials	3 credits
* CE 203	Engineering Geology and Geomorphology	3 credits
* CE 205	Numerical Methods	2 credits
* CE 207	Applied Mathematics for Engineers	3 credits
* WRE 211	Fluid Mechanics	3 credits
* CE 211	Mechanics of Solids I	3 credits
		Prereq. CE 101

* CE 213	Mechanics of Solids II	3 credits
		Prereq. CE 211
Sessional		
* CE 100	Civil Engineering Drawing	1.5 credits
* CE 102	Computer Aided Drafting	1.5 credits
* CE 104	Practical Surveying	1.5 credits
* Shop 132	Workshop Sessional	1.5 credits
* CE 200	Details of Construction	1.5 credits
* CE 202	Materials Sessional	1.5 credits
* WRE 212	Fluid Mechanics Sessional	1.5 credits
* CE 204	Computer Programming Sessional	1.5 credits
* CE 206	Engineering Computation Sessional	1.5 credits
		Prereq. CE 204
* CE 208	Quantity Surveying	1.5 credits
* CE 210	Architectural, Engineering and Planning Appreciation	1.5 credits
* CE 212	Structural Mechanics and Materials Sessional	1.5 credits

* Compulsory 14.5 CIVIL ENGINEERING PRACTICE

Requirement 17.0 Credits (10+7.0)				
Professional Practices and Communication	3 credits			
Project Planning and Construction Management	4 credits			
Sustainability of Development Projects	3 credits			
Business and Career Development	3 credits			
Principles of Project Finance	3 credits			
Professional Training in Civil Engineering	1.0 credits			
Professional Practices and Communication Sessional	1.5 credits			
Capstone Project	4.5 credits			
	Professional Practices and CommunicationProject Planning and Construction ManagementSustainability of Development ProjectsBusiness and Career DevelopmentPrinciples of Project FinanceProfessional Training in Civil EngineeringProfessional Practices and Communication Sessional			

* Compulsory 14.6 STRUCTURAL ENGINEERING

	Minimum Requirement 20.5 Credits (16+4.5)				
Theoretical					
* CE 311	Structural Analysis	4 credits			
		Prereq. CE 213			
* CE 315	Design of Concrete Structures I	3 credits			
* CE 317	Design of Concrete Structures II	3 credits			
		Prereq. CE 315			
* CE 319	Design of Steel Structures	3 credits			
* CE 411	Analysis of Indeterminate Structures	3 credits			
		Prereq. CE 311			
CE 413	Introduction to Steel Concrete Composite Structures	2 credits			
CE 415	Prestressed Concrete	2 credits			
CE 417	Design of Concrete Structures III	2 credits			
CE 419	Introduction to Finite Element Method	2 credits			
CE 421	Dynamics of Structures	2 credits			

Sessional		
* CE 316	Bridge Design Sessional	1.5 credits
* CE 320	Steel Structures Design Sessional	1.5 credits
* CE 410	Building Design Sessional	1.5 credits
CE 400	Undergraduate Thesis	3.0 credits

* Compulsory

14.7 ENVIRONMENTAL ENGINEERING

	Minimum Requirement 20.5 Credits (16+4.5	5)
Theoretical		
* CE 331	Environmental Engineering I	3 credits
* CE 333	Environmental Engineering II	4 credits
CE 433	Solid and Hazardous Waste Management	2 credits
CE 435	Environmental Pollution Management	2 credits
CE 437	Basic Environmental Management	2 credits
Sessional		
* CE 332	Environmental Engineering Laboratory	1.5 credits
CE 400	Undergraduate Thesis	3.0 credits

* Compulsory 14.8 GEOTECHNICAL ENGINEERING

	Minimum Requirement 8.5 Credits (7	7+1.5)
Theoretical		
* CE 341	Principles of Soil Mechanics	4 credits Prereq. CE 203
* CE 441	Foundation Engineering	3 credits
CE 443	Earth Retaining Structures	2 credits
CE 445	Elementary Soil Dynamics	2 credits
CE 447	Soil-water Interaction	2 credits
Sessional		
* CE 342	Geotechnical Engineering Laboratory	1.5 credits
CE 400	Undergraduate Thesis	3.0 credits

* Compulsory 14.9 TRANSPORTATION ENGINEERING

	Minimum Requirement 8.5 Credits (7+1.5)				
Theoretical					
* CE 351	Transportation Engineering I: Transportation Planning &	3 credits			
	Traffic Engineering				
* CE 451	Transportation Engineering II: Pavement Design and Railway	4 credits			
	Engineering				
CE 453	Transportation Engineering III: Traffic Engineering Design	2 credits			
	and Management				
CE 455	Transportation Engineering IV: Pavement Management,	2 credits			
	Drainage and Airport				
CE 457	Transportation Engineering V: Urban Transportation Planning	2 credits			
	and Management				

Sessional		
CE 400	Undergraduate Thesis	3.0 credits
* CE 452	Transportation Engineering Sessional I: Highway Materials and Traffic Engineering Design	1.5 credits

* Compulsory

14.10 WATER RESOURCES ENGINEERING

Minimum Requirement 8.5 Credits (7+1.5)				
Theoretical				
* WRE 311	Open Channel Flow	4 credits		
* WRE 451	* WRE 451 Hydrology, Irrigation and Flood Management 3 cr			
Sessional				
* WRE 312	Open Channel Flow Sessional	1.5 credits		

* Compulsory

14.11 Summary of the Requirements for B.Sc. Engg. (Civil) Degree

Courses	Requirements (Total Credits to be Offered)
A. Natural Science	12 (15)
B. Mathematics	9 (9)
C. Humanities and Social Sciences	9.5 (11.5)
D. Basic Engineering	48 (48)
E. Civil Engineering Practice	12.5 (18.5)
F. Structural Engineering	20.5 (38)
G. Environmental Engineering	8.5 (22)
H. Geotechnical Engineering	8.5 (22)
I. Transportation Engineering	8.5 (22)
J. Water Resources Engineering	8.5 (18.5)
Total	144.5
UG Thesis	3.0
Capstone Project	4.5
Optional Courses**: Theory	8.0 (38 in F to J, Max. 4 from each division)
Grand Total	161

** Students specializing in an optional group, such as Structural, Geotechnical, Environmental and Transportation, shall take thesis, capstone project, and at least two optional theory courses from that group and two more optional theory courses from any other group.

Level Term Course No. Course Credit Status Selection Basis/ Title Hours of Remarks Course CE 101 Analytic Mechanics 3.00 С Chem 103 3.00 С Chemistry I Differential and Integral Calculus, Matrices Math 137 3.00 С Phy 101 Physical Optics, Waves and 3.00 С Oscillation, Heat and Thermodynamics 1 I Hum 355 Sociology 2.00 0 Select one Hum 375 2.00 0 Government CE 100 1.50 С Civil Engineering Drawing Chem 114 Inorganic Quantitative Analysis 1.50 С Phy 102 Physics Laboratory 1.50 С Total 18.50

15. Courses offered in Different Term

C: Compulsory O: Optional

Level	Term	Course No.	Course Title	Credit Hours	Status of Course	Selection Basis/ Remarks
		CE 103	Surveying	4.00	С	
		EEE 165	Basic Electrical Technology	3.00	С	
		Hum 185	English	2.00	С	
		Math 139	Differential Equations and Statistics	3.00	С	
		Chem 105 *	Chemistry II	3.00	0	
1	II	Phy 151 *	Structure of Matter, Electricity and Magnetism and Modern Physics	3.00	0	Select one
		CE 102	Computer Aided Drafting	1.50	С	
		CE 104	Practical Surveying	1.50	С	
		HUM 274	Developing English Language Skills	1.50	С	
		Shop 132	Workshop Sessional	1.50	С	
	•	•	Total	21.00		•

C: Compulsory O: Optional

*: Registration of this course requires obtaining minimum F grade in its pre-requisite course

Level	Term	Course No.	Course Title	Credit Hours	Status of Course	Selection Basis/ Remarks
		CE 201	Engineering Materials	3.00	С	
		CE 203	Engineering Geology and Geomorphology	3.00	С	
		CE 211 *	Mechanics of Solids I	3.00	С	
		Hum 353	Accounting	2.00	С	
2	Ι	Math 237	Laplace Transform and Vector Analysis	3.00	С	
2	1	CE 200	Details of Construction	1.50	С	
		CE 202	Materials Sessional	1.50	С	
		CE 204	Computer Programming Sessional	1.50	С	
		CE 210	Architectural, Engineering and Planning Appreciation	1.50	С	
			Total	20.00		

C: Compulsory

*: Registration of this course requires obtaining minimum F grade in its pre-requisite course

Level	Term	Course No.	Course Title	Credit Hours	Status of Course	Selection Basis/ Remarks
		CE 205	Numerical Methods	2.00	С	
		CE 213 *	Mechanics of Solids II	3.00	С	
		Hum 217	Engineering Economics	2.00	С	
		CE 207	Applied Mathematics for Engineers	3.00	С	
2	Π	WRE 211	Fluid Mechanics	3.00	С	
		CE 206 *	Engineering Computation Sessional	1.50	С	
		CE 208	Quantity Surveying	1.50	С	
		CE 212	Structural Mechanics and Materials Sessional	1.50	С	
		WRE 212	Fluid Mechanics Sessional	1.50	С	
			Total	19.00		

C: Compulsory

*: Registration of this course requires obtaining minimum F grade in its pre-requisite course

Level	Term	Course No.	Course Title	Credit Hours	Status of Course	Selection Basis/ Remarks
		CE 301	Professional Practices and Communication	3.00	С	
		CE 311 *	Structural Analysis	4.00	С	
		CE 315	Design of Concrete Structures I	3.00	С	
3	T	CE 331	Environmental Engineering I	3.00	С	
5		CE 341 *	Principles of Soil Mechanics	4.00	С	
		CE 302	Professional Practices and Communication Sessional	1.50	С	
		CE 332	Environmental Engineering Laboratory	1.50	С	
		CE 342	Geotechnical Engineering Laboratory	1.50	С	
		•	Total	21.50		•

C: Compulsory

*: Registration of this course requires obtaining minimum F grade in its pre-requisite cours

Level	Term	Course No.	Course Title	Credit Hours	Status of Course	Selection Basis/ Remarks
		CE 317 *	Design of Concrete Structures II	3.00	С	
		CE 319	Design of Steel Structures	3.00	С	
		CE 333	Environmental Engineering II	4.00	С	
3	II	CE 351	Transportation Engineering I: Transportation Planning & Traffic Engineering	3.00	С	
		WRE 311	Open Channel Flow	4.00	С	
		CE 300	Professional Training in Civil Engineering	1.00	С	
		CE 316	Bridge Design Sessional	1.50	С	
		CE 320	Steel Structures Design Sessional	1.50	С	
		WRE 312	Open Channel Flow Sessional	1.50	С	
			Total	22.50		

C: Compulsory

*: Registration of this course requires obtaining minimum F grade in its pre-requisite course

Level	Term	Course No.	Course Title	Credi t Hours	Status of Course	Selection Basis/ Remarks
		CE 401	Project planning and Construction Management	4.00	С	
		CE 411 *	Analysis of Indeterminate Structures	3.00	С	
		CE 441	Foundation Engineering	3.00	С	
4	Ι	CE 451	Transportation Engineering II: Pavement Design and Railway Engineering	4.00	С	
		WRE 451	Hydrology, Irrigation and Flood Management	3.00	С	
		CE 452	Transportation Engineering Sessional I: Highway Materials and Traffic Engineering Design	1.50	С	
		CE 400 **	Undergraduate Thesis	1.50	С	
		CE 404 **	Capstone Project	1.50	С	
		CE 410	Building Design Sessional	1.50	С	
			Total	23.00		

C: Compulsory

*: Registration of this course requires passing of its pre-requisite course

**: To register in a division of specialization from Structural, Environmental, Geotechnical, and Transportation Engineering.

$4 II \begin{bmatrix} CE 403 & Sustainability of Development Projects & 3.00 & 0 \\ CE 405 & Business and Career Development & 3.00 & 0 \\ CE 400 ** Undergraduate Thesis & 1.50 & C \\ CE 400 ** Undergraduate Thesis & 1.50 & C \\ CE 400 ** Capstone Project & 3.00 & C \\ CE 413 & Introduction to Steel-Concrete \\ Composite & 2.00 & O \\ CE 413 & Structures & 2.00 & O \\ CE 415 & Prestressed Concrete & 2.00 & O \\ CE 417 & Design of Concrete Structures III & 2.00 & O \\ CE 419 & Introduction to Finite Element Method & 2.00 & O \\ CE 419 & Introduction to Finite Element Method & 2.00 & O \\ CE 421 & Dynamics of Structures & 2.00 & O \\ CE 433 & Solid and Hazardous Waste Management & 2.00 & O \\ CE 437 & Basic Environmental Pollution Management & 2.00 & O \\ CE 4437 & Basic Environmental Management & 2.00 & O \\ CE 443 & Earth Retaining Structures & 2.00 & O \\ CE 443 & Earth Retaining Structures & 2.00 & O \\ CE 445 & Elementary Soil Dynamics & 2.00 & O \\ CE 445 & Elementary Soil Dynamics & 2.00 & O \\ CE 445 & Elementary Soil Dynamics & 2.00 & O \\ CE 445 & Transportation & Engineering III: Traffic Engineering IV: Pavement Management, 2.00 & O \\ CE 455 & Transportation & Engineering IV: Pavement Management, 2.00 & O \\ CE 457 & Transportation & Engineering V: Urban Transportation & Scelect two (Transport) \\ CE 457 & Transportation & Engineering V: \\ Drainage and Airport & C & 0 \\ Planning and Management & 2.00 & O \\ CE 457 & Transportation & Engineering V: \\ Urban Transportation & Planning and Management \\ Drainage and Aingement & 2.00 & O \\ CE 457 & Transportation & Engineering V: \\ Urban Transportation & Planning and Management \\ Drainage and Aingement & 2.00 & O \\ CE 457 & Transportation & Engineering V: \\ Urban Transportation & Planning and Management \\ Drainage and Aingement & 2.00 & O \\ CE 457 & Transportation & Engineering V: \\ Urban Transportation & Planning and Management \\ Drainage and Aingement & 2.00 & O \\ Drainage and Aingement $	Level	Term	Course No.	Course Title	Credit Hours	Status of Course	Selection Basis/ Remarks
$4 \qquad \text{II} \qquad \begin{array}{ c c c c c } \hline CE 407 & Principles of Project Finance & 3.00 & O \\ \hline CE 400 ** & Undergraduate Thesis & 1.50 & C \\ \hline CE 400 ** & Capstone Project & 3.00 & C \\ \hline CE 404 ** & Capstone Project & 3.00 & C \\ \hline CE 413 & Introduction to Steel-Concrete & 2.00 & O \\ \hline CE 413 & Structures & 2.00 & O \\ \hline CE 415 & Prestressed Concrete & 2.00 & O \\ \hline CE 417 & Design of Concrete Structures III & 2.00 & O \\ \hline CE 419 & Introduction to Finite Element Method & 2.00 & O \\ \hline CE 4211 & Dynamics of Structures & 2.00 & O \\ \hline CE 433 & Solid and Hazardous Waste Management & 2.00 & O \\ \hline CE 435 & Environmental Pollution Management & 2.00 & O \\ \hline CE 443 & Earth Retaining Structures & 2.00 & O \\ \hline CE 443 & Earth Retaining Structures & 2.00 & O \\ \hline CE 445 & Elementary Soil Dynamics & 2.00 & O \\ \hline CE 447 & Soil-water Interaction & 2.00 & O \\ \hline CE 453 & Transportation & Engineering III: \\ \hline CE 453 & Transportation & Engineering III: \\ \hline CE 455 & Transportation & Engineering IV: \\ \hline CE 457 & Transportation & Engineering V: \\ \hline Transportation & Engineering V: \\ \hline CE 457 & Transportation & Engineering V: \\ \hline Transportation & Planning and Management \\ \hline CE 457 & Transportation & Engineering V: \\ \hline Urban Transportation & Planning and Management \\ \hline CE 457 & Transportation & Engineering V: \\ \hline Transportation & Planning and Management \\ \hline CE 457 & Transportation & Engineering V: \\ \hline CE 457 & Transportation & Engineering V: \\ \hline CE 457 & Transportation & Engineering V: \\ \hline CE 457 & Transportation & Engineering V: \\ \hline CE 457 & Transportation & Planning and Management \\ \hline CE 455 & Transportation & Engineering V: \\ \hline CE 457 & Transportation & Planning and Management \\ \hline CE 457 & Transportation & Planning and Management \\ \hline CE 457 & Transportation & Engineering V: \\ \hline CE 457 & Transportation & Engineering V: \\ \hline CE 457 & Transportation & Planning and Management \\ \hline CE 457 & Transportation & Planning and Management \\ \hline CE 457 & Transportation & Planning And Management \\ \hline CE 457 & Transportation & Planning And Management \\ \hline CE 457 & Trans$			CE 403	Sustainability of Development Projects	3.00	0	Select one
$4 \qquad \text{II} \qquad \begin{array}{ c c c c c } \hline CE 400 ** & Undergraduate Thesis & 1.50 & C \\ \hline CE 404 ** & Capstone Project & 3.00 & C \\ \hline CE 413 & Introduction to Steel-Concrete \\ Composite & 2.00 & O \\ \hline CE 413 & Structures & 2.00 & O \\ \hline CE 415 & Prestressed Concrete & 2.00 & O \\ \hline CE 417 & Design of Concrete Structures III & 2.00 & O \\ \hline CE 419 & Introduction to Finite Element Method & 2.00 & O \\ \hline CE 421 & Dynamics of Structures & 2.00 & O \\ \hline CE 433 & Solid and Hazardous Waste Management & 2.00 & O \\ \hline CE 435 & Environmental Pollution Management & 2.00 & O \\ \hline CE 443 & Earth Retaining Structures & 2.00 & O \\ \hline CE 445 & Elementary Soil Dynamics & 2.00 & O \\ \hline CE 445 & Elementary Soil Dynamics & 2.00 & O \\ \hline CE 445 & Elementary Soil Dynamics & 2.00 & O \\ \hline CE 453 & Transportation & Engineering III: \\ Traffic Engineering III: \\ CE 453 & Transportation & Engineering IV: \\ Pavement Management & 2.00 & O \\ \hline CE 457 & Transportation & Engineering V: \\ \hline Transportation & Engineering V: \\ \hline CE 457 & Transportation & Engineering V: \\ \hline Transportation & Engineering V: \\ \hline Urban Transportation & Planning and Management \\ \hline CE 457 & Transportation & Engineering V: \\ \hline Transportation & Planning and Management \\ \hline CE 457 & Transportation & Engineering V: \\ \hline Transportation & Planning and Management \\ \hline CE 457 & Transportation & Engineering V: \\ \hline CE 457 & Transportation & Engineering V: \\ \hline CE 457 & Transportation & Planning and Management \\ \hline CE 457 & Transportation & Engineering V: \\ \hline CE 457 & Transportation & Planning and Management \\ \hline CE 455 & Transportation & Engineering V: \\ \hline CE 457 & Transportation & Planning and Management \\ \hline CE 457 & Transportation & Engineering V: \\ \hline CE 457 & Transportation & Planning and Management \\ \hline CE 457 & Transportation & Planning and Management \\ \hline CE 457 & Transportation & Planning and Management \\ \hline CE 457 & Transportation & Planning and Management \\ \hline CE 457 & Transportation & Planning and Management \\ \hline CE 457 & Transportation & Planning and Management \\ \hline CE 457 & Transportation & Planning a$			CE 405	Business and Career Development	3.00	0	
$4 \qquad \text{II} \qquad \begin{array}{ c c c c } \hline CE 404 ** & Capstone Project & 3.00 & C & \\ \hline CE 413 & Introduction & to & Steel-Concrete & 2.00 & O & \\ \hline CE 413 & Introduction & to & Steel-Concrete & 2.00 & O & \\ \hline CE 415 & Prestressed Concrete & 2.00 & O & \\ \hline CE 417 & Design of Concrete Structures III & 2.00 & O & \\ \hline CE 419 & Introduction to Finite Element Method & 2.00 & O & \\ \hline CE 419 & Introduction to Finite Element Method & 2.00 & O & \\ \hline CE 421 & Dynamics of Structures & 2.00 & O & \\ \hline CE 433 & Solid and Hazardous Waste Management & 2.00 & O & \\ \hline CE 435 & Environmental Pollution Management & 2.00 & O & \\ \hline CE 437 & Basic Environmental Management & 2.00 & O & \\ \hline CE 443 & Earth Retaining Structures & 2.00 & O & \\ \hline CE 445 & Elementary Soil Dynamics & 2.00 & O & \\ \hline CE 445 & Elementary Soil Dynamics & 2.00 & O & \\ \hline CE 447 & Soil-water Interaction & 2.00 & O & \\ \hline CE 453 & Transportation Engineering III: \\ Traffic Engineering & 2.00 & O & \\ \hline CE 455 & Transportation Engineering IV: \\ Pavement Management & & \\ \hline CE 457 & Transportation Engineering V: \\ \hline Drainage and Airport & & \\ \hline CE 457 & Transportation Engineering V: \\ \hline Drainage and Management & & \\ \hline CE 457 & Transportation Engineering V: \\ \hline Drainage and Management & & \\ \hline CE 457 & Transportation Engineering V: \\ \hline Drainage and Management & & \\ \hline CE 457 & Transportation Engineering V: \\ \hline CE$			CE 407	Principles of Project Finance	3.00	0	
4IIIntroduction to Steel-Concrete Composite2.00OSelect two (Structure)4IICE 413Introduction to Finite Element Method2.00OSelect two (Structure)4IICE 415Prestressed Concrete2.00OOSelect two (Structure)CE 417Design of Concrete Structures III2.00OOSelect two (Structure)CE 419Introduction to Finite Element Method2.00OOSelect two (Environmental Pollution Management2.00OCE 433Solid and Hazardous Waste Management2.00OOSelect two (Environment)CE 435Environmental Pollution Management2.00OSelect two (Environment)CE 443Earth Retaining Structures2.00OSelect two (Geotechnical)CE 445Elementary Soil Dynamics2.00OSelect two (Geotechnical)CE 445TransportationEngineering Traffic Engineering2.00OCE 453TransportationEngineering III: Pavement Management, Drainage and Airport2.00OCE 457TransportationEngineering V: Urban Transportation2.00OCE 457TransportationEngineering V: Urban Transportation2.00OCE 457TransportationEngineering V: Urban Transportation2.00OCE 457TransportationEngineering V: Urban Transportation2.00OPlanning and ManagementSelect two <b< td=""><td></td><td></td><td>CE 400 **</td><td>Undergraduate Thesis</td><td>1.50</td><td>С</td><td></td></b<>			CE 400 **	Undergraduate Thesis	1.50	С	
4IICE 413 StructuresComposite Structures2.00 StructuresSelect two (Structure)4IICE 415 CE 417Prestressed Concrete Design of Concrete Structures III CE 4192.00 Introduction to Finite Element Method CE 4192.00 O O CE 411O O O CE 411Select two (Structure)4IICE 433 CE 433Solid and Hazardous Waste Management CE 4352.00 Environmental Pollution Management 2.00 CE 4372.00 Basic Environmental Management2.00 O O CE 443O Select two (Environment)CE 443Earth Retaining Structures CE 4452.00 Elementary Soil DynamicsO O O OSelect two (Geotechnical)CE 445Elementary Soil Dynamics Design and Management2.00 CO CE 455O Transportation Pavement Management, Drainage and AirportO O O O CE 457Select two (Transportation Engineering IV: Pavement Management, Drainage and AirportO <b< td=""><td rowspan="2"></td><td rowspan="17">П</td><td>CE 404 **</td><td>Capstone Project</td><td>3.00</td><td>С</td><td></td></b<>		П	CE 404 **	Capstone Project	3.00	С	
4IICE 415 CE 417 CE 419 Design of Concrete Structures III Introduction to Finite Element Method CE 419 CE 419 CE 419 Dynamics of Structures CE 419 CE 433 CE 443 CE 443 CE 443 CE 443 CE 443 CE 444 CE 444 CE 445 CE 445 CE 445 CE 447 CE 453 CE 453 CE 453 CE 453 CE 454 CE 454 CE 454 CE 455 CE 455 CE 455 CE 455 CE 457 CE 457 <td>CE 413</td> <td>Composite</td> <td>2.00</td> <td>0</td> <td rowspan="5"></td>			CE 413	Composite	2.00	0	
4IICE 417 CE 419Design of Concrete Structures III Low CE 4192.00 O 			CE 415		2.00	0	
4IIIntroduction to Finite Element Method2.00OCE 419Introduction to Finite Element Method2.00OCE 421Dynamics of Structures2.00OCE 433Solid and Hazardous Waste Management2.00OCE 435Environmental Pollution Management2.00OCE 437Basic Environmental Management2.00OCE 438Earth Retaining Structures2.00OCE 443Earth Retaining Structures2.00OCE 445Elementary Soil Dynamics2.00OCE 447Soil-water Interaction2.00OCE 453Transportation Engineering III: Traffic Engineering2.00OCE 455Transportation Engineering IV: Pavement Management,2.00OCE 457Transportation Engineering V: Urban Transportation2.00OCE 457Transportation Engineering V: Urban Transportation2.00OCE 457Transportation Engineering V: Urban Transportation2.00O	4					0	
4IICE 433 CE 433Solid and Hazardous Waste Management2.00O O O CE 435Select two (Environment)4CE 433Solid and Hazardous Waste Management2.00O O (Environment)Select two (Environment)CE 435Environmental Pollution Management2.00O O (Environment)Select two (Environment)CE 437Basic Environmental Management2.00O OSelect two (Geotechnical)CE 443Earth Retaining Structures2.00OSelect two (Geotechnical)CE 445Elementary Soil Dynamics2.00OSelect two (Geotechnical)CE 447Soil-water Interaction2.00OSelect two (Geotechnical)CE 453Transportation Engineering III: Design and Management2.00OCE 455Transportation Engineering IV: Pavement Management, Drainage and Airport2.00OCE 457Transportation Engineering V: Urban Transportation2.00OCE 457Planning and Management2.00O			CE 419		2.00	0	
4IICE 435Environmental Pollution Management2.00OSelect two (Environment)CE 437Basic Environmental Management2.00OOEnvironment)CE 437Basic Environmental Management2.00OOSelect two (Geotechnical)CE 443Earth Retaining Structures2.00OOSelect two (Geotechnical)CE 445Elementary Soil Dynamics2.00OOSelect two (Geotechnical)CE 447Soil-water Interaction2.00OOSelect two (Geotechnical)CE 453Transportation Engineering III: Design and Management2.00OSelect two (Transport)CE 455Transportation Engineering IV: Pavement Management, Drainage and Airport2.00OSelect two (Transport)CE 457Transportation Engineering V: Urban Transportation2.00OO			CE 421	Dynamics of Structures	2.00	0	
4IICE 435Environmental Pollution Management2.00OSelect two (Environment)CE 437Basic Environmental Management2.00OOEnvironment)CE 437Basic Environmental Management2.00OOSelect two (Geotechnical)CE 443Earth Retaining Structures2.00OOSelect two (Geotechnical)CE 445Elementary Soil Dynamics2.00OOSelect two (Geotechnical)CE 447Soil-water Interaction2.00OOSelect two (Geotechnical)CE 453Transportation Engineering III: Design and Management2.00OSelect two (Transport)CE 455Transportation Engineering IV: Pavement Management, Drainage and Airport2.00OSelect two (Transport)CE 457Transportation Engineering V: Urban Transportation2.00OO			CE 433	Solid and Hazardous Waste Management	2.00	0	
CE 437Basic Environmental Management2.00OCE 443Earth Retaining Structures2.00OCE 445Elementary Soil Dynamics2.00OCE 447Soil-water Interaction2.00OCE 453Transportation Engineering III: Traffic Engineering2.00OCE 455Transportation Engineering IV: Pavement Management, Drainage and Airport2.00OCE 457Transportation Engineering V: Urban Transportation2.00OCE 457Transportation Engineering V: Urban Transportation2.00O			CE 435	Environmental Pollution Management	2.00	0	
CE 445Elementary Soil Dynamics2.00OSelect two (Geotechnical)CE 447Soil-water Interaction2.00OOCE 453Transportation Engineering III: Traffic Engineering2.00OOCE 453Transportation Engineering IV: Pavement Management2.00OSelect two (Geotechnical)CE 455Transportation Engineering IV: Pavement Management, Drainage and Airport2.00OSelect two (Transport)CE 457Transportation Engineering V: Urban Transportation2.00OO			CE 437	Basic Environmental Management	2.00	0	
CE 445Elementary Soil Dynamics2.00OGenerationCE 447Soil-water Interaction2.00OOCE 453TransportationEngineeringIII: Traffic Engineering2.00OCE 453TransportationEngineeringIII: Traffic Engineering2.00OCE 455TransportationEngineeringIV: Pavement Management,2.00OCE 455TransportationEngineeringIV: Pavement Management,2.00OCE 457TransportationEngineeringV: Urban Transportation2.00OCE 457Planning and Management2.00OO			CE 443	Earth Retaining Structures	2.00	0	
CE 447Soil-water Interaction2.00OCE 453TransportationEngineeringIII: Traffic Engineering2.00OCE 453TransportationEngineeringIII: Traffic Engineering2.00OCE 455TransportationEngineeringIV: Pavement Management,2.00OCE 455TransportationEngineeringIV: Pavement Management,2.00OCE 457TransportationEngineeringV: Urban Transportation2.00OPlanning and ManagementV: Urban Transportation2.00O			CE 445	Elementary Soil Dynamics	2.00	0	
CE 453 Traffic Engineering 2.00 O Design and Management Design and Management Select two CE 455 Transportation Engineering IV: Pavement Management, Drainage and Airport 2.00 O CE 457 Transportation Engineering V: 2.00 O CE 457 Transportation Engineering V: 2.00 O Planning and Management Planning and Management D O O			CE 447	Soil-water Interaction	2.00	0	
CE 455 Transportation Engineering IV: Pavement Management, Drainage and Airport 2.00 O (Transport) CE 457 Transportation Engineering V: Urban Transportation 2.00 O Planning and Management Planning and Management 0 0			CE 453	Traffic Engineering	2.00	0	
CE 455 Pavement Management, Drainage and Airport 2.00 O CE 457 Transportation Urban Transportation Planning and Management 2.00 O							Select two
CE 457 Transportation Engineering V: Urban Transportation 2.00 O Planning and Management			CE 455	Pavement Management,	2.00	0	(Transport)
CE 457 Urban Transportation 2.00 O Planning and Management							
			CE 457	Urban Transportation	2.00	0	
Total 15.50					15.50		

C: Compulsory O: Optional *: Registration of this course requires passing of its pre-requisite course **: To register in division of specialization from Structural, Environmental, Geotechnical, and Transportation Engineering.

16. Course wise Content as approved by the Academic Council

16.1 Courses Offered by the Department of Civil Engineering (For Civil Engineering students)

CE 100: Civil Engineering Drawing 1.50 credits, 3 hrs/week

Lines and lettering; plane geometry: drawing of linear and curved geometric figures, e.g. pentagon, hexagon, octagon, ellipse, parabola, hyperbola; solid geometry: concept of isometric view and oblique view, theory of projections; drawing of isometric view of 3d objects such as cube, prism, pyramid, cone and cylinder; projections of cube, prism, cone, cylinder; developments of cube, pyramid, cone, cylinder; plan, elevations and sections of one storied and duplex building.

CE 101: Analytic Mechanics 3.00 credits, 3 hrs/week

Coplanar and non-coplanar force systems; moments; analyses of two- dimensional frames and trusses; friction; flexible chords; centroids of lines, areas and volumes; moments of inertia of areas and masses; plane motion; principles of work and energy; impulse and momentum; virtual work principle for rigid bodies.

CE 102: Computer Aided Drafting 1.50 Credits, 3 hrs/week

Introduction to computer usage; introduction to CAD packages and computer aided drafting: drawing editing and dimensioning of simple objects; plan, elevations and sections of multi-storied buildings; reinforcement details of beams, slabs, stairs etc; plan and section of septic tank; detailed drawings of roof trusses; plans, elevations and sections of culverts, bridges and other hydraulic structures; drawings of building services. **CE 103: Surveying 4.00 credits, 4 hrs/week**

Reconnaissance survey; linear measurements; traverse survey; triangulation, leveling and contouring; calculation of areas and volumes; problems on heights and distances; curves and curve ranging, transition curve, vertical curves; tacheometry: introduction, principles and problems on tacheometry; astronomical surveying: definition, instruments, astronomical corrections, systems of time; photogrammetry: introduction of terrestrial photography, aerial photography, reading of photo mosaic, scale; project surveying; errors in surveying; remote sensing; introduction to geographic information system (GIS) and global positioning system (GPS).

CE 104: Practical Surveying 1.50 credits, 3 hrs/week

Linear and angular measurement techniques; traverse surveying; leveling and contouring; curve setting; tacheometry; project surveying; modern surveying equipment and their applications.

CE 200: Details of Constructions 1.50 credits, 3 hrs/week

Types of building, components of a building, design loads, framed structure and load bearing wall structure; foundations: shallow foundation and deep foundation, site exploration, bearing capacity of soil, standard penetration test; brick masonry: types of brick, bonds in brickwork, supervision of brickwork, brick laying tools, defects and strength on brick masonry, typical structures in brickwork, load bearing and non-load bearing walls, cavity walls, partition walls; lintels and arches: different types of lintels and arches, loading on lintels, construction of arches; stairs: different types of stairs, floors: ground floors and upper floors; roofs and roof coverings; shoring; underpinning; scaffolding and formwork; plastering, pointing, painting; distempering and white washing; cement concrete construction; sound insulation: acoustics; thermal insulation; house plumbing: water supply and wastewater drainage.

CE 201: Engineering Materials 3.00 credits, 3 hrs/week

Properties and uses of aggregates, brick, cement; sand, lime, mortars; concrete; concrete mix design; wood structures

and properties; shrinkage and seasoning; treatment and durability; mechanical properties; wood products; advanced fiber reinforced polymer (FRP) composites and its application to civil engineering; reinforcement types, basic property of FRP composites and available FRP composite products; definition of stress and strain; plane stress and strain condition; identification of strain components of elastic, elasto-plastic and elasto-visco-plastic materials; time dependent strain response of these materials due to different types of loadings; mathematical and simple rheological modeling for prediction of creep behavior; ferrocement: advantages and uses; corrosion and prevention of steel in RC structures, offshore structures and ground applications.

CE 202: Materials Sessional 1.50 credits, 3 hrs/week

General discussion on preparation and properties of concrete, test for specific gravity, unit weight, voids and bulking of aggregates; moisture content and absorption of coarse and fine aggregates; normal consistency, initial setting time, soundness and fineness test of cement; direct tensile and compressive strengths of cement mortar; gradation of coarse and fine aggregates; design and testing of a concrete mix, sampling and testing of bricks for absorption, unit weight, efflorescence and compressive strength.

CE 203: Engineering Geology and Geomorphology 3.00 credits, 3 hrs/week

Minerals; identification of minerals, common rock forming minerals; physical properties of minerals; mineraloids rocks; types of rocks, cycle of rock change; earthquake and seismic map of Bangladesh.

Structural geology; faults; types of faults; fold and fold type; domes; basins; erosional process; quantitative analysis of erosional land forms. Channel development; channel widening; valley shape; stream terraces; alluvial flood plains; deltas and alluvial fans; channel morphology; channel patterns and the river basin; geology and geomorphology of Bangladesh.

CE 204: Computer Programming Sessional 1.50 credits, 3 hrs/week

Programming concepts and algorithms; internal representation of data; elements of structured programming language: data types, operators, expressions, control structures, functions, pointers and arrays, input and output; concept of Object Oriented Programming (OOP): encapsulation, inheritance, polymorphism and abstraction.

CE 205: Numerical Methods 2.00 credits, 2 hrs/week

Systems of linear algebraic equations; interpolation and curve fitting; roots of equations; numerical differentiation; numerical integration; initial value problems; two-point boundary value problems; finite differences.

CE 206: Engineering Computation Sessional 1.50 credits, 3 hrs/week Prereq. CE 204

Introduction to hi-level computational programming tools; application to numerical analysis: basic matrix computation, solving systems of linear equations, non-linear equations, differential equations, interpolation and curve fitting, numerical differentiation, numerical integration; application to engineering problems: solving problems related to mechanics, numerical solution of equation of motion etc.

CE 207: Applied Mathematics for Engineers 3.00 credits, 3 hrs/week

Review of differential equations; power series solution of differential equations and their applications: Frobenius method, Legendre's polynomials, gamma function, Bessel's function; integral form of differential equation and its application to engineering problem solving.

Fourier series and its properties, application to engineering problem solving; Fourier integral; Fourier transforms and their uses in solving boundary value problems.

Application of statistical methods to engineering problems: Random variables; discrete and continuous probability distributions; functions of random variables and derived distributions; expectation and moments of random variables; point estimation of distribution parameters: methods of moments and maximum likelihood, Bayesian analysis; confidence intervals; hypothesis tests; nonparametric statistical tests; simple and multiple linear regression and model selection; uncertainty and reliability analysis; project level decision making and quality control.

CE 208: Quantity Surveying 1.50 credits, 3 hrs/week

Earthwork excavation for roadway, earthwork computation from spot levels; estimation for residential building: estimation of slab, beam, column, footing; analysis of rates, specifications, costing of residential building; estimation and costing of septic tank; estimation and costing of underground water reservoir; estimation and costing of retaining wall; estimation and costing of slab culvert; estimation and costing of bridges; highways construction; estimation of steel truss; computer aided quantity estimation; construction site survey and estimation.

CE 210: Architectural, Engineering and Planning Appreciation 1.50 credits, 3 hrs/week

Appreciation of architecture, mechanical engineering, urban and regional planning; environmental issues.

CE 211: Mechanics of Solids I 3.00 credits, 3 hrs/week Prereq. CE 101

Concepts of stress and strain, generalized Hooke's law; deformations due to tension, compression and temperature change; frame statics: reactions, axial force, shear force and bending moments; axial force, shear force and bending moment diagrams of beams using method of section and summation approach; elastic analysis of circular shafts in torsion, solid noncircular and thin walled tubular members subjected to torsion, flexural and shear stresses in beams; shear center; closely coiled helical springs.

CE 212: Structural Mechanics and Materials Sessional 1.50 credits, 3 hrs/week

Tension, direct shear and impact tests of mild steel specimen; slender column test; static bending test; hardness test of metals; helical spring test; determination of shear centre; study of structural models: truss, beam frame.

CE 213: Mechanics of Solids II 3.00 credits, 3 hrs/week Prereq. CE 211

Symmetric and unsymmetrical bending of beams; stresses due to axial load and bending; stress transformation, Mohr's circle of stresses; beam deflection by direct integration and moment area method; elastic buckling of columns; elastic strain energy; cable theorem and cable supported structures, thin-walled pressure vessels.

CE 300: Professional Training in Civil Engineering 1.00 credits, 2 hrs/week

Involvement as a trainee in a Civil Engineering related industry/ projects/ firms to gather knowledge on state-of-the-art practices of Civil Engineering.

CE 301: Professional Practices and Communication

3.00 credits, 3 hrs/week

Project, its characteristic feature, project life cycle; type of contracts; procurement regulations and law; documents for procurement of works, goods and services and their application; contract risk and contract responsibility; insurances; tender procedure; claims, disputes and arbitration procedure; measures for reducing fiduciary risks.

Introduction to communication concepts, modes of communication, methods of effective communication; writing reports; oral presentation of reports; writing proposals; preparing effective business messages; conducting meetings; strategies for effective speaking and successful inter personal communication; job application process, interviews and follow-ups; an introduction to the code of ethics for engineers.

CE 302: Professional Practices and Communication Sessional

1.50 credits, 3 hrs/week

Application of communication theory and professional practice approaches in a controlled class room environment; this may include case study analysis, role playing, preparing small reports and proposals, class room presentations and individual reports etc.

CE 311: Structural Analysis 4.00 credits, 4 hrs/week Prereq. CE 213

Stability and determinacy of structures; Analysis of statically determinate frames, trusses and arches; Influence lines; Moving loads on beams, frames and trusses; Wind and earthquake loads, code provisions.

Approximate analysis of statically indeterminate structures: Mill bents, braced trusses; Portal method, cantilever method and vertical load analysis of multi storied building frames; building drift.

Deflection of beams, trusses and frames by virtual work method; Approximate analysis of suspension bridges.

CE 315: Design of Concrete Structures I 3.00 credits, 3 hrs/week

Fundamental behavior of reinforced concrete and loads on structure; introduction to strength design and alternate design methods; flexural design of beams (singly reinforced, doubly reinforced, T-beam) using strength design method; shear, diagonal tension and torsion of beams; bond and anchorage of reinforcement and its detailing; design of one- way slabs; design of two-way edge supported slabs.

CE 316: Bridge Design Sessional 1.50 credits. 3 hrs/week

Design and detailing of a slab bridge; design and detailing of a balanced cantilever bridge; design and detailing of a PC Girder Bridge.

CE 317: Design of Concrete Structures II 3.00 credits, 3 hrs/week Prereq. CE 315

Design of column supported slabs; introduction to floor systems; structural forms; design of columns under uniaxial and biaxial loading, introduction to slender column; structural design of footings, pile caps; seismic detailing; shear wall subjected to axial load and flexure; introduction to prestressed concrete; analysis and preliminary design of prestressed beam.

CE 319: Design of Steel Structures 3.00 credits, 3 hrs/week

Behavioral principles and design of structural steel; design of tension members, residual stress; bolted and welded connections; compression members; local buckling, effective length; flexural members; lateral torsional buckling, flexure and shear strength, point loads on beam, design for deflection.

Introduction to beam-columns; non-sway frames.

Connection design: simple connection, moment connection, column bases; introduction to floor systems for steel buildings.

CE 320: Steel Structures Design Sessional 1.50 credits, 3 hrs/week

Analysis and design of low rise moment frame building for gravity and wind loads; design of members, connections and columns bases.

CE 331: Environmental Engineering I 3.00 credits, 3 hrs/week

Introduction to Environmental Engineering: ecology and environment; climate change; biodiversity; energy and environment.

Water Supply Engineering: introduction; water supply scenario in Bangladesh and SDG targets; water demands; water supply sources; ground water exploration: aquifer properties and ground water flow, well hydraulics, water well design, drilling, construction and maintenance; water demand for rural communities; shallow hand tubewells, deep tubewells, deep set pumps, rainwater harvesting, and alternative water supplies for problem areas.

Surface water collection and transportation; head works; pumps and pumping machineries; water distribution systems; analysis and design of distribution network; fire hydrants; water meters; leak detection; unaccounted for water.

Water quality requirements; water treatment: plain sedimentation, coagulation, flocculation, filtration, disinfection; miscellaneous treatment methods; low cost treatment methods for rural communities; water safety plans.

CE 332: Environmental Engineering Laboratory 1.50 credits, 3 hrs/week

Water and wastewater sampling techniques, sample preservation, physical, chemical and biological tests of water and wastewater; breakpoint chlorination, alum coagulation, sampling and laboratory analysis of air, sampling and laboratory analysis of soil and solid waste.

CE 333: Environmental Engineering II 4.00 credits, 4 hrs/week

Introduction to waste management: liquid waste, solid waste, air and noise pollution.

Wastewater Engineering: introduction; estimation of wastewater; wastewater collection systems; hydraulics of sewer; design, construction and maintenance of sanitary sewer and storm drainage system; sewer appurtenances.

Wastewater characteristics; microbiology of wastewater; wastewater treatment and disposal; sludge treatment and disposal.

Sanitation and health; sanitation coverage in Bangladesh and SDG targets; onsite sanitation system including fecal sludge management (FSM), pour-flush toilets, septic tank system, Anaerobic Baffled Reactor (ABR); decentralized wastewater treatment systems (DEWATS).

Plumbing system.

Sustainability of water and sanitation services, introduction to EIA.

CE 341: Principles of Soil Mechanics 4.00 credits, 4 hrs/week Prereq. CE203

Introduction to geotechnical engineering; formation, type and identification of soils; soil composition; soil structure and fabric; index properties of soils; engineering classification of soils; soil compaction; principles of total and effective stresses; permeability and seepage; stress-strain-strength characteristics of soils; compressibility and settlement behavior of soils; lateral earth pressure; stress distribution.

CE 342: Geotechnical Engineering Laboratory 1.50 credits, 3 hrs/week

Field identification tests of soils; grain size analysis by sieve and hydrometer; specific gravity test; Atterberg limits test; permeability tests; unconfined compression test; compaction test; relative density test; direct shear tests; consolidation tests; test of geotextiles.

CE 351: Transportation Engineering I: Transportation Planning and Traffic Engineering 3.00 credits, 3 hrs/week

Transportation engineering, transportation functions; transportation systems, functional components, factors in transportation development, transportation modes, public transportation, emerging modes; intelligent transportation system: components and applications; transport planning: concepts, scope and hierarchy, process, goals and objectives, inventories, socio-economic activities, land use-transport interaction, travel demand forecasting; road safety and accident analysis.

Geometric design of highways: design controls and criteria, cross sectional elements, alignment, sight distance, intersection and interchange layouts, planning and design of bicycle and pedestrian facilities; traffic engineering: fundamentals of traffic engineering, vehicle and traffic characteristics, traffic control devices and systems, traffic studies, planning and design of parking facilities, roadway lighting; transportation in Bangladesh: transportation modes and networks, constraints and challenges, transport demand and modal share, road classification and design standards.

CE 400: Undergraduate Thesis 3.00 credits, 6 hrs/week

Experimental and theoretical investigation of various topics in structural engineering, environmental engineering, transportation engineering and geotechnical engineering. Individual or group study of one or more topics from any of the above fields. The students will be required to present and submit thesis at the end of the work.

CE 401: Project Planning and Construction Management 4.00 credits, 4 hrs/week

Project evaluation: cash flow and net present value, perpetuities and annuities, internal rate of return, payback period, benefit-cost ratio, real and nominal interest rate, capital budgeting, risk versus return, capital asset pricing model and project cost of capital, financial and economic feasibility, sensitivity analysis.

Leading and managing teams: human resource management, dysfunctions in teams, team development, conflict management, leading teams, self-managing teams, decision making in teams, case study.

Project operation management: project as a process, inventory management, economic order quantity, demand forecasting – newsvendor model, labour and plant management – line balancing, legal and ethical issues in project – case study, environmental regulations, procurement – value for money (VfM).

Project planning and control: planning and scheduling, PERT, CPM, resource scheduling, linear programming and application.

Construction management: principles, project organization, methods and practices, technology, management of materials and equipment, site management, contracts and specifications, inspection and quality control, quality assurance, safety, economy.

CE 403: Sustainability of Development Projects

3.00 credits, 3 hrs/week

Environment and sustainable development; sustainable development goals (SDGs); economics and social structure; development and economic growth; socio-economic indicators; concept of human development, human development index; gender related human development index; human poverty and human poverty index; poverty reduction strategies in Bangladesh.

Socio-economic aspects of development projects; human interest related aspects; land loss, land use and land ownership patterns; population displacement; resettlement and rehabilitation strategy; inequalities in distribution of benefits and losses.

Socio-economic impact assessment approach; socio-economic survey; case studies.

CE 404: Capstone Project 4.50 credits, 9 hrs/week

Planning, analysis and design of an integrated civil engineering project with emphasis on structural engineering/ environmental engineering/ transportation engineering/ geotechnical engineering specialization. Students shall work in teams to apply civil engineering theories, methodologies, and skills to assess the technical, environmental, and social feasibility of the project including design and cost estimation. Student shall engage their diverse civil engineering and cross- disciplinary knowledge to prepare plans and specifications of the project including Bill of Quantity (BoQ) and tender documents.

Students shall present their projects and submit project reports at the end of the work.

CE 405: Business and Career Development 3.00 credits, 3 hrs/week

Understanding and managing organizations: structural, human resource, political, symbolic fames.

Developing strategy and competitive advantage: industry analysis, complementor, understanding value, strategy development.

Managing disruptive innovations - understanding innovation, organizing for innovation.

Marketing management: capturing market insight, connecting with customers, communicating value, building strong brands.

Career development: definition of career, value of career development, external and internal dimensions of career, career stages, preparing for job search, networking, interview, career fairs, internship, building online brand, preparing resume, civil engineering careers of the future and vision for civil engineering.

Becoming an entrepreneur: identify opportunity, developing business model, designing value Proposition, Lean Startups, Hypothesis Testing, Sales & Marketing.

CE 407: Principles of Project Finance 3.00 credits, 3 hrs/week

Fundamental aspects of project finance, project development and management, working with lenders, project agreement, commercial risks, regulatory and political risks, financial structuring, financial model, financial support, documentation.

CE 410: Building Design Sessional 1.50 credits, 3 hrs/week

Analysis and design of low rise RC moment frame buildings for wind and low seismic application; multi-storied RC buildings with shear wall and mat foundation for wind and high seismic application; reinforcement design and detailing at joints.

CE 411: Analysis of Indeterminate Structures 3.00 credits, 3 hrs/week Prereq. 311

Stiffness properties of beam elements; Moment distribution and flexibility/consistent deformation approaches in solving statically indeterminate structures e.g. beams, frames and trusses; matrix stiffness method in analyzing statically indeterminate beams, plane frames, grids and trusses subject to loads, temperature changes, support settlements etc.; computer application oriented direct stiffness method; influence lines of statically indeterminate structures.

CE 413: Introduction to Steel-Concrete Composite Structures 2.00 credits, 2 hrs/week

Introduction to composite structures, advantages of composite construction; behaviour of different types of composite columns, axial load capacity and interaction diagram for composite columns.

Composite floor system: details of composite deck and shear connectors.

Elastic and plastic analysis of composite beams; design of composite beams for serviceability and strength limit states.

CE 415: Prestressed Concrete 2.00 credits, 2 hrs/week

Prestressed Concrete: concepts of prestressing; materials; anchorage systems; loss of prestress; analysis of sections for flexure, shear, bond and bearing; analysis of end block and composite sections; beam deflections; cable layout; partial prestress.

Design of prestressed concrete beams for simple and continuous spans; ideas about use of AASHTO – PCI sections for standard spans; design considerations for prestressed concrete pipes, piles, poles and railway sleepers.

CE 417: Design of Concrete Structures III 2.00 credits, 2 hrs/week

Analysis and design for torsion; design of one way and two way joist slabs with or without beam on the column line; design and detailing of lateral load resisting components: shear wall, lift cores, diaphragm etc.; design of reinforcement at joints.

CE 419: Introduction to Finite Element Method 2.00 credits, 2 hrs/week

Introduction to finite element method as applied to stress analysis problems; basic equations in elasticity, matrix displacement formulation, element shapes, nodes, nodal unknowns and coordinate system, shape functions, strain displacement matrix, methods for assembling stiffness equations e.g. direct approach, Galerkin's method, virtual work method, principle of minimum potential energy; introduction to isoparametric formulation; discritization of a structure and mesh refinement, one dimensional stress-deformation and two dimensional plane stress and plane strain analysis of stress- deformation problems; numerical integration and computer application.

CE 421: Dynamics of Structures 2.00 credits, 2 hrs/week

Single degree of freedom system, free vibration response; response to harmonic, impulse and general dynamic loading; numerical evaluation of dynamic response; earthquake response of linear system; two degrees of freedom system; response spectrum analysis.

CE 433: Solid and Hazardous Waste Management 2.00 credits, 2 hrs/week

Solid Waste Management: sources and types of solid wastes; physical and chemical properties of solid wastes; solid waste generation; on-site handling, storage and processing; collection of solid wastes; transfer stations and transport; ultimate disposal methods; resources and energy recovery options; 3R strategy; Solid waste management policy in Bangladesh.

Hazardous Waste Management: identification, sources and characteristics of hazardous wastes; hospital waste management practices; legal aspects; auditing and prevention; methods of treatment and disposal – physical, chemical, biological and thermal treatment; stabilization and solidification, engineering storage, incineration, landfill and deep burial.

CE 435 Environmental Pollution Management 2.00 credits, 2 hrs/week

Water pollution: sources and types of pollutants, emerging contaminants; waste assimilation capacity of streams; dissolved oxygen modeling; ecological balance of streams; industrial pollution; lake pollution and eutrophication; heavy metal contamination; groundwater pollution; marine pollution; water quality problems in Bangladesh; pollution control measures: water quality monitoring and management.

Air pollution: sources and types of pollutants; effects of various pollutants on human health, materials and plants; air pollution meteorology; introduction to air quality models; air pollution monitoring and control measures; global warming, climate change and ozone layer depletion; acid rain.

Noise pollution and control measures.

CE 437: Basic Environmental Management 2.00 credits, 2 hrs/week

Introduction to environmental management; environmental policies, legislative and institutional framework; environmental implication of sectoral development; environmental quality standards; environmental impact assessment of development projects; strategic environmental assessment; environmental auditing; economics of environmental management; case studies.

CE 441: Foundation Engineering 3.00 credits, 3 hrs/week

Soil investigation techniques; types of foundations; bearing capacity of shallow and deep foundations; settlement and distortion of foundations; design and construction of footings, rafts and piles; slope stability analyses.

CE 443: Earth Retaining Structures 2.00 credits, 2 hrs/week

Foundation of structures subjected to lateral loads; rigid and flexible earth retaining structures; methods of construction: dewatering and slurry-wall construction, braced excavation, sheet piles, cofferdams, caissons.

CE 445: Elementary Soil Dynamics 2.00 credits, 2 hrs/week

Elementary vibrations; dynamic properties of soil; seismic response of soils: site effects, site amplification, liquefaction problems, remedial measures and earthquake hazards.

CE 447: Soil-water Interaction 2.00 credits, 2 hrs/week

Introduction to soil-water interaction problems: permeability, capillarity and soil suction; slopes subjected to water current, wave action etc; theories of filters and revetment design; geotechnical design of landfills.

CE 451: Transportation Engineering II: Pavement Design and Railway Engineering 4.00 credits, 4 hrs/week

Pavement materials: bituminous binders, cement, aggregates, embankment material, soil stabilization; mix design methods; low cost roads; flexible and rigid pavement: pavement components and functions, pavement design and construction, road maintenance; railway engineering: general requirements, rolling stock and tracks, stations and yards, points and crossings, signaling, maintenance operations.

CE 452: Transportation Engineering Sessional I: Highway Materials and Traffic Engineering Design 1.50 credits, 3 hrs/week

Testing and quality control of highway materials; bituminous mix design; roadway traffic and capacity analysis; computer models and application packages.

CE 453: Transportation Engineering III: Traffic Engineering Design and Management 2.00 credits, 2 hrs/week

Advanced concepts of traffic management, management strategies; analysis of traffic flow characteristics; traffic control devises; intersection control and design; grade separation and interchanges; computer application in traffic system analysis; introduction to micro simulation and ITS; NMT issues and road safety.

CE 455: Transportation Engineering IV: Pavement Management, Drainage and Airport 2.00 credits, 2 hrs/week

Pavement management systems; evaluation and strengthening of pavements; drainage: highway drainage and drainage structures; airports: importance, advantages and trends in air transportation, planning and design of airports, aircraft characteristics related to airport design, types and elements of airport planning studies, airport configuration, geometric design of the landing area, terminal area, heliports, design of airport pavements, lighting, marking and signing, airport drainage.

CE 457: Transportation Engineering V: Urban Transportation Planning and Management 2.00 credit, 2 hrs/week

The urban transport problems and trends; road network planning; characteristics and operation of different transit and paratransit modes, planning transit network; estimating system costs and benefits, pricing and financing, evaluation, transit users' attitude, policies and strategies for transit development in metropolitan cities; freight traffic planning and management; selected transport case studies, congestion management; safety management; environmental issues and sustainable transport.

16.2 Courses Offered by the Department of Water Resources Engineering WRE 211: Fluid Mechanics 3.00 credit, 3 hrs/week

Fluid properties; fluid statics; kinematics of fluid flows; fluid flow concepts and basic equations- continuity equation, Bernoulli's equation, energy equation, momentum equation and forces in fluid flow; steady incompressible flow in pressure conduits, laminar and turbulent flow, general equation for fluid friction; empirical equations for pipe flow; minor losses in pipe flow; pipe flow problems-pipes in series and parallel, branching pipes, pipe networks.

WRE 212: Fluid Mechanics Sessional 1.5 Credit, 3 hrs/week

Centre of pressure; proof of Bernoulli's theorem; flow through venturimeter; flow through orifice; coefficient of velocity by coordinate method; flow through mouthpiece; flow over v-notch; flow over sharp- crested weir; fluid friction in pipe.

WRE 311: Open Channel Flow 4.00 Credit, 4 hrs/week

Open channel flow and its classification; velocity and pressure distributions; energy equation, specific energy and transition problems; critical flow and control; principles of flow measurement and devices; concept of uniform flow, Chezy and Manning equations, estimation of resistance coefficients and computation of uniform flow; momentum equation and specific momentum; hydraulic jump theory and analysis of gradually varied flow; computation of flow profiles; design of channels.

WRE 312: Open Channel Flow Sessional 1.5 Credit, 3 hrs/week

Broad-crested weir; sluice gate; venturi flume; parshall flume; cutthroat flume; hydraulic jump; velocity distribution profile; Manning's roughness coefficient; specific force and specific energy.

WRE 451: Hydrology, Irrigation and Flood Management 3.00 Credit, 3 hrs/week

Hydrologic cycle; hydrologic measurement: precipitation, evaporation and stream flow; hydrographs; plant-soilwater relationship; consumptive use and estimation of irrigation water requirements; methods of irrigation; quality of irrigation water; problems of irrigated land; flood and its management.

WRE 405: Flood Mitigation and Management 2.00 Credit, 2 hrs/week

Flood and its causes; methods of flood management: structural and non structural measures such as reservoirs, levees and flood walls, channel improvement, interior drainage, floodways, land management, flood proofing, flood zoning, flood hazard mapping, flood forecasting and warning.

Economic aspects of flood management: flood risk and vulnerability analysis, direct and indirect losses of flood, flood damage assessment, flood damage in urban and rural areas.

WRE 407: Groundwater Engineering 2.00 Credit, 2 hrs/week

Groundwater in hydrologic cycle and its occurrence. Physical properties and principles of groundwater movement. Groundwater and well hydraulics. Groundwater resource evaluation. Groundwater levels and environmental influences. Water mining and land subsidence. Groundwater pollution and contaminant transport. Recharge of groundwater. Saline water intrusion in aquifers. Groundwater management

WRE 409: River Engineering 2.00 Credit, 2 hrs/week

Behavior of alluvial rivers; river channel pattern and fluvial processes; aggradation and degradation, local scours, river training and bank protection works; navigation and dredging sediment movement in river channels, bed form and flow regimes.

WRE 411: Hydraulic Structures 2.00 Credit, 2 hrs/week

Principles of design hydraulic structures, types of hydraulic structures; design of dams, barrages, weirs, spillways, energy dissipators and spillway gates; cross drainage works.

WRE 413: Coastal Engineering 2.00 Credit, 2 hrs/week

Coast and coastal features; tides and currents; tidal flow measurement; waves and storm surges; docks and harbors; forces of waves and tides in the design of coastal and harbor structures; coastal sedimentation processes; deltas and estuaries; shore protection works; dredging and dredgers.

16.3 Courses Offered by the Department of Electrical and Electronic Engineering EEE 165: Basic Electrical Technology 3.00 Credit, 3 hrs/week

Electrical units and standards; electrical network and circuit solution: series, parallel, node and mesh analysis; instantaneous current, voltage and power, effective current and voltage, average power; sinusoidal single phase RLC circuits: phasor algebra, balanced three phase circuits; electrical wiring for residential and commercial loads; introduction to transformers and induction motors.

16.4 Courses Offered by the Department of Physics Phy 101: Physical Optics, Waves and Oscillation, Heat and Thermodynamics 3.00 Credit, 3 hrs/week

Physical Optics: theories of light; Young's double slit experiment, displacement of fringes and its uses, Fresnel biprism, interference at wedge shaped films, Newton's rings, interferometers; diffraction of light; Fresnel and Fraunhoffer diffraction, diffraction by single slit, diffraction from a circular aperture, resolving power of optical instruments, diffraction at double slit and n-slits-diffraction grating; polarization; production and analysis of polarized light, Brewster's law, Malus law, polarization by double refraction, retardation plates, nicol prism, optical activity, polarimeters, polaroid.

Waves and Oscillations: differential equation of a simple harmonic oscillator, total energy and average energy, combination of simple harmonic oscillations, Lissajous figures, spring-mass system, calculation of time period of torsional pendulum, damped oscillation, determination of damping co-efficient; forced oscillation, resonance, two-body oscillations, reduced mass, differential equation of a progressive wave, power and intensity of wave motion, stationary wave, group velocity and phase velocity, architectural acoustics, reverberation and Sabine's formula.

Heat and Thermodynamics: principle of temperature measurements: platinum resistance thermometer, thermoelectric thermometer, pyrometer; kinetic theory of gases: Maxwell's distribution of molecular speeds, mean free path, equipartition of energy, Brownian motion, Vander Waal's equation of state, review of the first law of thermodynamics and its application, reversible and irreversible processes, second law of thermodynamics, Carnot cycle; efficiency of heat engines, Carnots theorem, entropy and disorder, thermodynamic functions, Maxwell relations, Clausius-Clapeyron equation, Gibbs phase rule, third law of thermodynamics.

Phy 102: Physics Laboratory 1.50 Credit, 3 hrs/week

Determination of line frequency by Lissajous figures using an oscilloscope and a function generator and verification of the calibration of time/div knob at a particular position for different frequencies; determination of frequency of a tuning fork by Melde's apparatus; determination of the spring constant and the effective mass of a loaded spring; to draw magnetic induction versus current curve for a circular coil using Biot-Savart law and hence to verify tangent law; determination of the moment of inertia of a fly-wheel about its axis of rotation; determination of rigidity modulus of the material of a wire by static method; determination of the pressure-coefficient of air by constant volume air thermometer; determination of the thermal conductivity of a bad conductor by lee's method; to plot the thermo- electromotive force vs temperature (calibration) curve for a given thermocouple (e5); determination of the methanical equivalent of heat by electrical method; determination of the focal length of (i) a convex lens by displacement method and (ii) a concave lens by an auxiliary lens method; determination of sugar solution by a polarimeter; to verify Malus' law of polarization; determination of the threshold frequency for the material of a photocathode and hence find the value of the Planck's constant; determination of lattice constant by x-ray.

Phy 151: Structure of Matter, Electricity and Magnetism and Modern Physics 3.00 Credit, 3 hrs/week

Structure of Matter : crystalline and non-crystalline solids, single crystal and polycrystal solids, unit cell, crystal systems, co-ordinations number, crystal planes and directions, NaCl and CsCl structure, packing factor, miller indices, relation between interplanar spacing and Miller indices, Bragg's law, methods of determination of interplanar spacing from diffraction patterns; defects in solids: point defects, line defects, bonds in solids, interatomic distances, calculation of cohesive and bonding energy; introduction to band theory: distinction between metal, semiconductor and insulator.

Electricity and Magnetism: coulomb's law, electric field (E), gauss's law and its application, electric potential (V), capacitors and capacitance, capacitors with dielectric, dielectric and atomic view, charging and discharging of a capacitor, Ohm's law, Kirchoff's law; magnetic field: magnetic induction, magnetic force on a current carrying conductor, torque on a current carrying loop, hall effect, faradays law of electromagnetic induction, Lenz's law, self-induction, mutual induction; magnetic properties of matter; hysteresis curve; electromagnetic oscillation: l-c oscillations and its analogy to simple harmonic motion.

Modern Physics: Michelson-Morley's experiment, Galilean transformation, special theory of relativity and its consequences; quantum theory of radiation; photo-electric effect, Compton effect, wave particle duality, interpretation of Bohr's postulates, radioactive disintegration, properties of nucleus, nuclear reactions, fission, fusion, chain reaction, nuclear reactor.

16.5 Courses Offered by the Department of Chemistry Chem 103: Chemistry I3.00 Credit, 3 hrs/week

Atomic structure and quantum theory: Bohr's theory, Heisenberg's uncertainty principle, Schrödinger's wave equation, electronic configurations and properties of atoms;

Electronic configurations and properties of molecules: chemical bond, valence bond theory molecular orbital theory, shape of molecules, bond length, bond energy;

Chemistry of halogen, alkali metals, alkaline earth metals, non-metals and heavy metals;

Modern concepts of acids and bases;

Different types of solutions; properties of dilute solution; Thermo- chemistry; Electrochemistry: voltaic cells, electrolytic cells; Colloids and colloidal solution; Chemical and ionic equilibria; Chemistry of water; Chemistry of water pollution; Chemistry of cements, silicates and limes.

Chem 105: Chemistry II 3.00 Credit Hours, 3 hrs/week

Reaction Kinetics: Rate of Chemical Reactions; Order and Molecularity of Reactions, Different Types of Rate Expressions, Methods of Determining Rate and Order, Effect of Temperature on Reaction Rate and Energy of Activation.

Chemical Corrosion: Introduction to Chemical Corrosion, Corrosion of Metals and Alloys in Dry and Wet Environments, Mechanism of Corrosion, Atmospheric and Soil Corrosion and Their Preventive Measures.

Chemistry of Environmental Pollution: Environment and Its Characteristics, Chemistry of Metal and Non-Metal Pollutants, Analytical Techniques used in Determination of Pollutants, Concepts of DO, BOD, COD and Threshold Odor Number, Chemistry Involved in Water Treatment Plants, Quality of Industrial Waste Water.

Polymers: Chemistry of Polymerization, Different Types of Polymers and Their Properties, Polymer Degradation, Elastomers and Composite Materials.

Paints and Varnishes: Introduction to Paints and Varnishes,

Pretreatment of the Surface, Metallic and Non-Metallic and Organic Protective Coating and Their Uses.

Chem 114: Inorganic Quantitative Analysis 1.5 Credit, 3 hrs/week

Volumetric Analysis: Acidimetry-Alkalimetry; Titrations involving redox reactions, Determination of Cu, Fe and Ca volumetrically; Determination of Ca and Mg in water.

16.6 Courses Offered by the Department of Mathematics Math 137: Differential and Integral Calculus, Matrices 3.00 Credit, 3 hrs/week

Differential Calculus: Limit, Continuity and differentiability; Successive differentiation and Leibnitz's theorem; Expansion of functions; Indeterminate forms; Partial differentiation; Euler's theorem; Tangent and Normal; Maxima and minima of functions of single variables.

Integral Calculus: Integration by parts; Standard integrals; Integration by the method of successive reduction; Definite integrals; Beta function; Gamma function; Multiple integrals.

Matrices: Definition of different kinds of matrices; Algebra of matrices; Inverse of matrix; Rank and elementary transformation of matrices; Solution of system of linear equations; Eigen values and eigen vectors; Cayley-Hamilton theorem.

Math 139: Differential Equations and Statistics 3.00 Credit, 3 hrs/week

Ordinary Differential Equation: Formation of differential equations; Solution of first order differential equations by various methods; Solution of differential equation of first order but higher degrees; Solution of general linear equations of second and higher orders with constant co-efficient; Solution of Euler's homogeneous linear differential equations.

Partial Differential Equation: Introduction, Linear and non-linear first order differential equations; Standard forms; Linear equations of higher order; Equations of the second order with variable co-efficients.

Statistics: Measures of central tendency and standard deviation; Moments, Skewness and Kurtosis; Elementary probability theory and discontinuous probability distribution; Continuous probability distributions, e.g. normal and exponential.

Math 237: Laplace Transform and Vector Analysis

3.00 Credit, 3 hrs/week

Laplace Transforms: Definition of Laplace transforms, Sufficient conditions for existence of Laplace transforms; Inverse Laplace transforms; Laplace transforms of derivatives; The unit step function; Periodic function; Some special theorems on Laplace transforms; Partial fraction; Solutions of differential equations by Laplace transforms.

Vector Analysis: Scalars and vectors, equality of vectors; Addition and subtraction of vectors; Multiplication of vectors by scalars; Position vector of a point; Scalar and vector product of two vectors and their geometrical interpretation; Triple products and multiple products of vectors; Linear dependence and independence of vectors; Definition of line, surface and volume integral; Gradient, divergence and curl of point functions; Gauss's theorem, Stoke's theorem, Green's theorem and their applications.

16.7 Courses Offered by the Department of Humanities Hum 185: English 2 Credit, 2 hrs/week

Introduction: current approaches to learning english, communication today.

Phonetics: phonetics and correct english pronunciation.

Syntax: vocabulary, diction and english sentence; sentence variety and style; grammatical problems.

Reading skill: readability, reading strategies, generating ideas through purposive reading, reading of selected stories, comprehension.

Writing skill: principles of effective writing; generating ideas, planning, organization and development of writing; composition, précis.

Written communication: business communication, tenders and quotations, journal articles, report.

Oral communication: dialogue, technical and scientific presentation.

Hum 217: Engineering Economics 2.00 Credit, 2 hrs/week

Economics and engineering; microeconomics and macroeconomics; theory of demand and supply and their elasticities; demand estimation; price determination; indifference curve technique; theory of production; theory of cost and cost estimation; market structure; national income accounting, depreciation; circular flow of income and expenditure; cost-benefit analysis; payback period, NPV, IRR, inflation; economic feasibility of engineering undertakings.

Hum 274: Developing English Language Skills 1.50 credit, 3 hrs/week

Reading skill: skimming, scanning, predicting, inferring; analysis and interpretation of texts; comprehension from literary and non-literary texts.

Writing skill: product approach, process approach: brain storming, self-evaluation, peer evaluation, revision/rewriting, teacher's evaluation; techniques of writing: comparison and contrast, problem and solution, cause and effect, classification, illustration; writing paragraph, essay and report.

Listening skill: listening to recorded texts; learning to take useful notes and answering questions.

Speaking skill: dialogue in peer work; participation in discussion and debate; extempore speech; narrating events; story telling; presentation.

Hum 353: Accounting 2.00 Credit, 2 hrs/week

Financial accounting: objectives and importance of accounting; accounting as an information system; basic accounting principles; accounting equation; recording system; accounting cycle; journal, ledger, trial balance; preparation of financial statements considering adjusting entries; financial statement analysis and interpretation. Cost accounting: cost concepts and classification; cost-volume-profit analysis; contribution margin approach and its application, break-even analysis, target profit analysis, operating leverage; absorption costing vs variable costing; job order costing; capital budgeting; long run planning and control.

Hum 355: Sociology 2.00 credit, 2 hrs/week

Nature, scope and perspectives of sociology; stages of social research and research methods; culture and civilization; socialization and personality development; globalization; media and individual; social organization and social problem; social stratification; industrial revolution, capitalism and socialism; work and economic life; environment and human activities; climate change and global risk; population and human society; urbanization and city development; social change and technology.

Hum 375: Government 2.00 Credit, 2 hrs/week

Basic concepts of government and politics: forms of government; organs of government- legislature, executive, judiciary; functions of government; democracy; socialism; welfare state; bureaucracy; good governance; e-government.

Government and politics of Bangladesh: major administrative reforms;

major amendments to the constitution- non-party caretaker government; local government; public policies; nongovernment organizations (NGOs); managing development project- planning, implementation, monitoring and evaluation; constitutional bodies- election commission, comptroller and auditor general, public service commission; foreign policy of Bangladesh.

Regional and international organizations: SAARC, ASIAN, UNO.

16.8 Courses Offered by the Shops Shop 132: Workshop Sessional

1.50 Credit, 3 hrs/week Carpentry shop (3/2 hrs/week)

Wood working tools; wood working machine: band saw, scroll saw, circular saw, jointer, thickness planer, disc sander, wood lathe; types of sawing; common cuts in wood works; types of joint; defects of timber: natural defects and artificial defects; seasoning; preservation; substitute of timber; commercial forms of timber; characteristics of good timber; use of fastening; shop practice: practical job, planning and estimating of a given job.

Machine shop (3/4 hrs/week)

Kinds of tools; common bench and hand tools; marking and layout tools, measuring tools, cutting tools, machine tools, bench work with job; drilling, shaper, lathe and milling machines: introduction, type, size and capacity, uses and applications.

Welding shop (3/4 hrs/week)

Methods of metal joints: Riveting, grooving soldering, welding; Types of welding joints and welding practice; Position of arc welding and polarty: Flat, vertical, horizontal, overhead; Electric Arc welding and its machineries; Welding of different types of materials: Low carbon steel, cast iron, brass, copper, stainless steel, aluminium; Types of electrode, fluxes and their composition; Arc welding defects; Test of Arc welding: Visual, destructive and non-destructive tests. Types of gas welding system and gas welding equipment; Gases and types of flame; welding of different types of materials; Gas welding defects; test of gas welding.

16.9 Courses Offered by the Department of Civil Engineering (For students of other Departments) CE 106: Engineering Drawing1.50 credits, 3 hrs/week. (For EEE Dept.)

Lettering, numbering and heading; instrument and their use; sectional and isometric views of solid geometrical figures; plan, elevation and section of multistoried buildings; drawings of building services; detailed drawing of lattice towers.

CE 209: Construction Materials 2.00 credits, 2 hrs/week. (For URP Dept.)

Engineering properties and uses of different construction materials - aggregates, brick, cement, sand, lime, mortars, concrete and steel; wood structures and properties; shrinkage and seasoning; treatment and durability; mechanical properties of wood products; fiber reinforced polymer (FRP) composites and its application to civil engineering; basic properties of FRP composites and available FRP composite products; ferrocement: advantages and uses; corrosion of steel in RC structures and its prevention.

CE 221: Mechanics of Solids I 3.00 credits, 3 hrs/week. (For WRE Dept.) Prereq. WRE 101

Concepts of stress and strain, generalized Hooke's law; deformations due to tension, compression and temperature change; frame statics: reactions, axial force, shear force and bending moments; axial force, shear force and bending moment diagrams of beams using method of section and summation approach; elastic analysis of circular shafts in torsion, solid noncircular and thin walled tubular members subjected to torsion, flexural and shear stresses in beams; shear center; closely coiled helical springs.

CE 222: Structural Mechanics and Materials Sessional 1.50 credits, 3 hrs/week. (For WRE Dept.)

Tension, direct shear and impact tests of mild steel specimen; slender column test; static bending test; hardness test of metals; helical spring test; determination of shear centre; study of structural models: truss, beam frame.

CE 223: Mechanics of Solids II 3.00 credits, 3 hrs/week. (For WRE Dept.) Prereq. CE 221

Symmetric and unsymmetrical bending of beams; stresses due to axial load and bending; stress transformation, Mohr's circle of stresses; beam deflection by direct integration and moment area method; elastic buckling of columns; elastic strain energy; cable theorem and cable supported structures, thin walled pressure vessels.

CE 265: Structure I: Mechanics 2.00 credits, 2 hrs/week. (For Arch Dept.)

Force; equilibrium; free body diagrams; resultants and components; coplanar concurrent forces; moments and parallel coplanar forces; centroids; moment of inertia of areas; fundamental concepts of stress and strain; mechanical properties of materials.

CE 267: Structure II: Basic Mechanics of Solids 2.00 credits, 2 hrs/week. (For Arch Dept.)

Stresses and strains in members subjected to tension, compression, shear and temperature changes; shear force and bending moment diagrams for statically determinate beams and frames; flexural and shearing stresses in beams by area-moment method.

CE 271: Building Services I: Plumbing 2.00 credits, 2 hrs/week. (For Arch Dept.)

Introduction to plumbing, water requirements, water sources; water supply and distribution in buildings; sewage and sewer system, building sewer and drainage system, sewage disposal; plumbing of multistoried buildings; rural sanitation programs in Bangladesh.

CE 290: Details of Construction 1.50 credits, 3 hrs/week. (For WRE Dept.)

Types of building, components of a building, design loads, framed structure and load bearing wall structure; foundations: shallow foundation and deep foundation, site exploration, bearing capacity of soil, standard penetration test; brick masonry: types of brick, bonds in brickwork, supervision of brickwork, brick laying tools, defects and strength on brick masonry, typical structures in brickwork, load bearing and non-load bearing walls, cavity walls, partition walls; lintels and arches: different types of lintels and arches, loading on lintels, construction of arches; stairs: different types of stairs; floors: ground floors and upper floors; roofs and roof coverings; shoring; underpinning; scaffolding and formwork; plastering, pointing, painting; distempering and white washing; cement concrete construction; sound insulation: acoustics; thermal insulation; house plumbing: water supply and wastewater drainage.

CE 291: Engineering Materials 3.00 credits, 3 hrs/week. (For WRE Dept.)

Properties and uses of aggregates, brick, cement; sand, lime, mortars; concrete; concrete mix design; wood structures and properties; shrinkage and seasoning; treatment and durability; mechanical properties; wood products; advanced fiber reinforced polymer (FRP) composites and its application to civil engineering; reinforcement types, basic property of FRP composites and available FRP composite products; definition of stress and strain; plane stress and strain condition; identification of strain components of elastic, elasto-plastic and elasto-visco-plastic materials; time dependent strain response of these materials due to different types of loadings; mathematical and simple rheological modeling for prediction of creep behavior; ferrocement: advantages and uses; corrosion and prevention of steel in RC structures, offshore structures and ground applications.

CE 292: Materials Sessional 1.50 credits, 3 hrs/week. (For WRE Dept.)

General discussion on preparation and properties of concrete, test for specific gravity, unit weight, voids and bulking of aggregates; moisture content and absorption of coarse and fine aggregates; normal consistency, initial setting time, soundness and fineness test of cement; direct tensile and compressive strengths of cement mortar; gradation of coarse and fine aggregates; design and testing of a concrete mix, sampling and testing of bricks for absorption, unit weight, efflorescence and compressive strength.

CE 321: Structural Analysis and Design I 4.00 credits, 4 hrs/week. (For WRE Dept.) Prereq. CE 223

Stability and determinacy of structures; analysis of statically determinate frames, trusses and arches; influence lines; moving loads on beams, frames and trusses; wind and earthquake loads, code provisions; approximate analysis of statically indeterminate structures: mill bents, braced trusses; portal method, cantilever method and vertical load analysis of multi storied building frames; building drift, deflection of beams, trusses and frames by virtual work method; approximate analysis of suspension bridges.

CE 322: Structural Analysis and Design Sessional 1.50 credits, 3 hrs/week. (For WRE Dept.)

Analysis and design of low rise moment frame building for gravity and wind loads; design of members, connections and columns bases; roof truss.

CE 323: Design of Concrete Structures I 3.00 credits, 3 hrs/week. (For WRE Dept.)

Fundamental behavior of reinforced concrete and loads on structure; introduction to strength design and alternate design methods; flexural design of beams (singly reinforced, doubly reinforced, t-beam) using strength design method; shear, diagonal tension and torsion of beams; bond and anchorage of reinforcement and its detailing; design of one way slabs; design of two-way edge supported slabs: using strip and alternate methods.

CE 324: Concrete Structures Design Sessional I 1.50 credits, 3 hrs/week. (For WRE Dept.)

Design and detailing of a low-rise masonry building; design and detailing of a slab bridge; design and detailing of a balanced cantilever bridge.

CE 325: Design of Concrete Structures II 3.00 credits, 3 hrs/week. (For WRE Dept.) Prereq. CE 323

Design of column supported slabs; introduction to floor systems; structural forms; design of columns under uniaxial and biaxial loading, introduction to slender column; structural design of footings, pile caps; seismic detailing; shear wall subjected to axial load and flexure; introduction to prestressed concrete; analysis and preliminary design of prestressed beam.

CE 361: Elements of Solid Mechanics 3 credits, 3 hrs/week. (For URP Dept.)

Force, resultants and components, moments and parallel coplanar forces, centroids, moment of inertia; fundamental concepts of stress and strain; mechanical properties of materials: stress and strain in members subjected to tensile, compressive and shear forces; bending moment and shear force diagrams for statically determinate structures.

CE 363: Elements of Civil Engineering Structures 3 credits, 3 hrs/week. (For URP Dept.)

Structural forms and systems for buildings, bridges, communication and transmission structures, flyovers and intersections, road embankments, irrigation, flood control and drainage structures; loads on buildings and structures; uses of steel, concrete and other materials in buildings and structures; types of foundations and their applications; concept of bearing capacity and settlement; evaluation of approximate costs.

CE 365: Structure III: Reinforced Concrete Design 2.00 credits, 2 hrs/week. (For Arch Dept.)

Fundamentals of reinforced concrete design; concept of WSD and USD methods; analysis and design of reinforced beams by USD; design of slabs, one-way and two-ways; reinforced concrete columns and buckling; introduction to shear walls, earthquake resistant structural systems.

CE 371: Environmental Engineering 4.00 credits, 4 hrs/week (For WRE Dept.)

Introduction to environmental engineering; water supply: water requirement, water sources, water quality; treatment and distribution systems, design concepts of water treatment plants; wastewater engineering: wastewater characteristics, treatment and disposal, on site sanitation systems; solid waste management. Introduction to environmental pollution; water, air, soil and noise pollution; effects of pollution.

Introduction to environmental management: environmental policy, legislation and environmental quality standards; introduction to environmental impact assessment.

CE 372: Environmental Engineering Sessional 1.5 credits, 3 hrs/week. (For WRE Dept.)

Sample collection, preservation and storage; physical, chemical and bacteriological tests of water and wastewater; alum coagulation and break point chlorination, preliminary design of water supply and sewerage system.

CE 381: Principles of Soil Mechanics 4.00 credits, 4 hrs/week. (For WRE Dept.)

Introduction to geotechnical engineering; formation, type and identification of soils; soil composition; soil structure and fabric; index properties of soils; engineering classification of soils; soil compaction; principles of total and effective stresses; permeability and seepage; stress-strain-strength characteristics of soils; compressibility and settlement behavior of soils; lateral earth pressure; stress distribution.

CE 382: Geotechnical Engineering Laboratory 1.50 credits, 3 hrs/week. (For WRE Dept.)

Field identification tests of soils; grain size analysis by sieve and hydrometer; specific gravity test; Atterberg limits test; permeability tests; unconfined compression test; compaction test; relative density test; direct shear tests; consolidation tests; test of geotextiles.

CE 391: Transportation Engineering 4.00 credits, 4 hrs/week. (For WRE Dept.)

Introduction to transportation engineering; elements and modes of transportation system; considerations in the planning, financing and development of transportation system; traffic safety issues; highways: highways; highways; traffic characteristics, traffic studies and traffic control devices; highway materials; design, construction and maintenance of low cost pavements, rigid pavements and bituminous pavements; railways: introduction, characteristics, alignment, permanent way, stations and yards, points and crossings; airports: introduction, airport site selection, airport configurations, geometric design of landing area; introduction to waterways and terminals.

CE 392: Transportation Engineering Sessional 1.5 credits, 3 hrs/week. (For WRE Dept.)

Tests on bituminous materials; tests on sub grade and base materials; roadway capacity studies; problems on the design of roadway geometry and pavements, application of analytical, simulation and statistical packages.

CE 424: Concrete Structures Design Sessional II 1.50 credits, 3 hrs/week. (For WRE Dept.)

Analysis and design of low rise RC moment frame buildings for wind and low seismic application; multistoried RC buildings with shear wall and mat foundation for wind and high seismic application; reinforcement design and detailing at joints.

CE 425: Analysis of Indeterminate Structures 3.00 credits, 3 hrs/week. (For WRE Dept.) Prereq. 321

Stiffness properties of beam elements; Moment distribution and flexibility/consistent deformation approaches in solving statically indeterminate structures e.g. beams, frames and trusses; matrix stiffness method in analyzing statically indeterminate beams, plane frames, grids and trusses subject to loads, temperature changes, support settlements etc.; computer application oriented direct stiffness method; influence lines of statically indeterminate structures.

CE 467: Structure IV: Elements of Building Structure 2.00 credits, 2 hrs/week. (For Arch Dept.)

Approximate analysis of multistoried buildings for gravity and lateral loads; simple analysis of truss sections; analysis and preliminary design of steel beams and columns; introduction to pre-stressed concrete; introduction to various structural forms and system; types of foundations; concept of bearing capacity and settlement.

CE 471: Basic Environmental Engineering 3 credits, 3 hrs/week. (For URP Dept.)

Introduction to environmental engineering; human and environment interaction.

Water Supply: objectives and basic elements of water supply system; water requirements; population prediction and water demand assessment; fire demand; planning of water supply systems - sources, abstraction, transmission, treatment and distribution.

Sanitation: urban and rural sanitation; low-cost sanitation technologies; elements of a conventional waterborne sewerage system-collection, transportation, treatment, and disposal; planning of sanitation systems. Solid waste management: sources and classification; on-site storage and handling; collection, transportation, and disposal; sanitary land filling method; waste recycling and reuse. Environmental pollution - air, water and soil, noise pollution.

CE 481: Foundation Engineering 3.00 credit, 3 hrs/week. (For WRE Dept.)

Soil investigation techniques; types of foundations; bearing capacity of shallow and deep foundations; settlement and distortion of foundations; design and construction of footings, rafts and piles; slope stability analyses.

CE 500: Preliminary Structural Design Sessional 1.50 credits, 3 hrs/week. (For Arch Dept.)

Preliminary analysis of multistoried building for gravity and lateral loads incorporating basic seismic resistant structural elements; preliminary proportioning of the structural elements of the building based on structural concepts developed in theory courses; laboratory testing; compression test of concrete cylinders, tension test of mild steel specimen, slender column test.

	pping or 1										1	1	1
Level	Courses	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
and Term													
Level	CE 101	√	✓										
-1 Term- 1	CE 100	~									√		
Level	CE 103	√	√										
-1 Term-	CE 102	\checkmark	\checkmark	\checkmark	√	√				\checkmark			\checkmark
2	CE 104	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				1	✓		
Level -2	CE 201	\checkmark	\checkmark	\checkmark									
-2 Term-	CE 203	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark					
1	CE 211	\checkmark	\checkmark										
	CE 200	\checkmark			\checkmark	\checkmark							
	CE 202	\checkmark	\checkmark			\checkmark				\checkmark			
	CE 204	\checkmark	\checkmark			\checkmark							
	CE 210	\checkmark	\checkmark				\checkmark	✓	\checkmark				\checkmark
Level -2	CE 205	\checkmark	\checkmark		\checkmark								
-2 Term-	CE 213	\checkmark	\checkmark										
2	CE 207	\checkmark	\checkmark										
	CE 206	\checkmark	\checkmark			\checkmark							
	CE 208	\checkmark							\checkmark				
	CE 212	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							\checkmark
Level -3	CE 301						\checkmark				✓	\checkmark	
-5 Term-	CE 311	\checkmark	\checkmark										
1	CE 315	\checkmark	\checkmark	\checkmark									
	CE 331	✓ ✓	√	✓									
	CE 341 CE 302	\checkmark	\checkmark										
	CE 302 CE 332		✓		✓	✓				\checkmark	\checkmark		
	CE 342	\checkmark	v		∨ √	v				•			
Level	CE 317	√	√	√	-						√		
-3 Term-	CE 300						\checkmark		√		✓		\checkmark
2	CE 319	✓	✓	\checkmark									
	CE 333	✓	✓	\checkmark			\checkmark	✓					
	CE 351	✓ ✓		✓ ✓			\checkmark						
	CE 316 CE 320	\checkmark	\checkmark	\checkmark									√
Level	CE 320 CE 401	✓	\checkmark	\checkmark	✓	✓		\checkmark				√	
-4	CE 401 CE 411	\checkmark	✓	`				V				v	
		•	•										

<u>17. Mapping of POs with course outcomes (COs) of all offered courses</u>

Level and Term	Courses	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Term-	CE 441	✓	✓	✓	✓								
1	CE 451	\checkmark	\checkmark	\checkmark			\checkmark						
	CE 452	\checkmark	\checkmark	\checkmark	\checkmark								
	CE 400		\checkmark	\checkmark	\checkmark				\checkmark				\checkmark
	CE 404					\checkmark							
	CE 410	\checkmark	\checkmark	\checkmark		\checkmark							
Level	CE 403						\checkmark	\checkmark			\checkmark		
-4 Term-	CE 405						\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
2	CE 404					\checkmark							
	CE 400		\checkmark	\checkmark	\checkmark				\checkmark		\checkmark		\checkmark
	CE 413	\checkmark	\checkmark	\checkmark	\checkmark								
	CE 415	\checkmark	\checkmark	\checkmark									
	CE 419	\checkmark	\checkmark	\checkmark		\checkmark							
	CE 421	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark						
	CE 433	\checkmark	\checkmark	\checkmark			\checkmark						
	CE 435	\checkmark	\checkmark				\checkmark	\checkmark					
	CE 437	\checkmark		\checkmark			\checkmark	\checkmark					
	CE 443	\checkmark	\checkmark	\checkmark									
	CE 445	\checkmark	\checkmark	\checkmark	\checkmark								\checkmark
	CE 447	\checkmark	\checkmark	\checkmark									
	CE 455	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark					
	CE 457	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark				

PART C: Detailed Description of Courses with outcome mapping

(Changes in PART C can be made through the approval of the respective BUGS. The changes made in this part cannot be conflicting with the content of PART A, PART B and the UG Ordinance of BUET.)

18. CO-PO Mapping

Level	Course	CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
and Term	s	s	1	2	3	4	5	6	7	8	9	0	1	2
Level	CE 101	СО	\checkmark	\checkmark										
-1		1												
Term		СО	\checkmark	\checkmark										
-1		2												
		CO 3	\checkmark	\checkmark										
		CO 4	\checkmark	\checkmark										
	CE 100	CO 1	\checkmark											

Level and Term	Course s	CO s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
Ierm		CO 2	\checkmark											
		CO 3	\checkmark									\checkmark		
		CO 4	\checkmark									\checkmark		
Level -1	CE 103	CO 1	\checkmark											
Term -2		CO 2	\checkmark	\checkmark										
		CO 3	\checkmark	\checkmark										
		CO 4	\checkmark											
	CE 102	CO 1		\checkmark			\checkmark				\checkmark			\checkmark
		CO 2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark			
		CO 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark			
		CO 4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							
	CE 104	CO 1	\checkmark	\checkmark		\checkmark	\checkmark				\checkmark	\checkmark		
		CO 2	\checkmark		\checkmark		\checkmark				\checkmark			
Level -2	CE 201	CO 1	\checkmark	\checkmark										
Term -1		CO 2	√	✓										
		CO 3	\checkmark											
	CE 202	CO 4			\checkmark									
	CE 203	CO 1 CO	\checkmark					√						
		2 CO	~	√		\checkmark								
		3 CO		× ✓	\checkmark				√					
		4 CO	\checkmark	Ň	✓ ✓				×					
		5 CO	✓ ✓	√	×									
	CE 211	6 CO	× √	✓ ✓										
		1 CO	v √	v √										
		2 CO	v √	v √										
		3 CO	v √	v √										
		4	v	v										

Level	Course	CO	PO	PO	PO 2	PO	PO 5	PO	PO 7	PO	PO	PO1	PO1	PO1
and Term	8	S	1	2	3	4	5	6	7	8	9	0	1	2
	CE 200	CO				\checkmark								
		1 CO	\checkmark			\checkmark								
		2 CO				1								
		3				\checkmark	\checkmark							
		CO 4				\checkmark								
		CO 5	√			\checkmark								
	CE 202	CO 1	\checkmark								\checkmark			<u> </u>
		CO 2	\checkmark								\checkmark			
		CO 3	\checkmark	\checkmark			\checkmark				\checkmark			
		CO 4	\checkmark	\checkmark							\checkmark			
		CO 5	\checkmark								\checkmark			
		CO 6	\checkmark								\checkmark			
	CE 204	CO 1	\checkmark	\checkmark			\checkmark							
		CO 2		\checkmark			\checkmark							
		CO 3	\checkmark	\checkmark			\checkmark							
		CO 4	\checkmark	\checkmark			\checkmark							
		CO 5	\checkmark	\checkmark			\checkmark							
	CE 210	CO 1	\checkmark					\checkmark	\checkmark	\checkmark				\checkmark
		CO 2	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark				\checkmark
Level -2	CE 205	CO 1	\checkmark											
Term -2		CO 2	\checkmark	\checkmark										
		CO 3	\checkmark			\checkmark								
		CO 4	\checkmark											
	CE 213	CO 1	\checkmark											
		CO 2	\checkmark											
		CO 3	\checkmark											
		CO 4	\checkmark	\checkmark	\checkmark									
		CO 5	\checkmark											

Level and	Course s	CO s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
Term														
		CO 6	\checkmark											
		0 CO	\checkmark											
		7	,											
	CE 207	CO 1	\checkmark	\checkmark										
		CO 2	\checkmark	\checkmark										
		CO 3	\checkmark	\checkmark										
		CO 4	\checkmark	\checkmark										
		CO 5	\checkmark	\checkmark										
	CE 206	CO 1					\checkmark							
		CO 2					\checkmark							
		CO 3	\checkmark	\checkmark			\checkmark							
	CE 208	CO 1	\checkmark											
		CO 2	\checkmark							\checkmark				
		CO 3	\checkmark							\checkmark				
		CO 4	\checkmark							\checkmark				
	CE 212	CO 1	\checkmark			\checkmark								
		CO 2	\checkmark			\checkmark	\checkmark							
		CO 3	\checkmark				\checkmark							
		CO 4	\checkmark	\checkmark	\checkmark	\checkmark								\checkmark
Level -3	CE 301	CO 1										\checkmark	\checkmark	
Term -1		CO 2										\checkmark	\checkmark	
		CO 3										\checkmark		
		CO 4											\checkmark	
		CO 5						\checkmark						
		CO 6						\checkmark						
	CE 311	CO 1	\checkmark											
		CO 2	\checkmark											
		CO 3	\checkmark	\checkmark										

Level	Course	CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
and Term	s	s	1	2	3	4	5	6	7	8	9	0	1	2
-		CO 4	\checkmark	\checkmark										_
		CO 5	\checkmark											
		CO 6	\checkmark	\checkmark										
	CE 315	CO 1	\checkmark											
		CO 2	\checkmark	\checkmark	\checkmark									
		CO 3	\checkmark	\checkmark	\checkmark									
		CO 4	\checkmark	\checkmark	\checkmark									
		CO 5	\checkmark	\checkmark	\checkmark									
	CE 331	CO 1	\checkmark						\checkmark					
		CO 2	√	√ 										
		CO 3	\checkmark	√ ,	\checkmark									
		CO 4 CO	1	\checkmark			✓							
	CE 341	5 CO	\checkmark	\checkmark										<u> </u>
	012 341	1 CO	\checkmark	\checkmark										
		2 CO	✓ ✓	✓ ✓										
		3 CO	v √	v √										<u> </u>
		4 CO	v √	v √										
		5 CO	· √	· √										
		6 CO	√	√										
		7 CO	\checkmark	\checkmark										
	CE 302	8 CO									\checkmark	\checkmark		
		1 CO									\checkmark	\checkmark		
		2 CO									\checkmark	\checkmark		<u> </u>
		3 CO 4									\checkmark	\checkmark		+
		4 CO 5									\checkmark			+
		CO 6									\checkmark			+
	1	v	1	1	1	1	1	1	1	1	1	1	1	1

Level	Course	CO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
and Term	s	s	1	2	3	4	5	6	7	8	9	0	1	2
	CE 332	CO 1				\checkmark					\checkmark			
		CO 2				\checkmark	\checkmark				\checkmark			
		CO 3		\checkmark		\checkmark					\checkmark			
	CE 342	CO 1	\checkmark			\checkmark								
		CO 2	\checkmark			\checkmark								
Level -3	CE 300	2 CO 1						\checkmark		\checkmark				
-5 Term -2		1 CO 2												\checkmark
-2		2 CO 3										\checkmark		
	CE 317	CO	\checkmark		\checkmark									
		1 CO 2	\checkmark	\checkmark										
		2 CO 3	\checkmark	\checkmark	\checkmark									
		3 CO 4	\checkmark									\checkmark		
		4 CO 5	\checkmark	\checkmark	\checkmark									
		CO 6	\checkmark											
		0 CO 7	\checkmark	\checkmark	\checkmark									
	CE 319	CO 1	\checkmark	\checkmark	\checkmark									
		СО	\checkmark	\checkmark	\checkmark									
		2 CO 3	\checkmark		\checkmark									
		CO 4	\checkmark	\checkmark	\checkmark									
		CO 5	\checkmark	\checkmark	\checkmark									
	CE 333	CO 1	\checkmark	\checkmark				✓	\checkmark					
		CO 2		\checkmark	\checkmark	1							1	
		CO 3	\checkmark					\checkmark	\checkmark					
		CO 4		1	\checkmark	1		\checkmark	\checkmark				1	
		CO 5		\checkmark	\checkmark									
		CO 6	\checkmark	\checkmark										
		CO 7	\checkmark	\checkmark										
			i	i	i	i	1	1	·	1	1			

Level	Course	CO	PO	PO	PO	PO 4	PO 5	PO	PO 7	PO 8	PO 9	PO1 0	PO1	PO1
and Term	S	s	1	2	3	4	3	6	/	8	9	U	1	2
		CO 8	\checkmark		\checkmark									
	CE 351	CO 1	\checkmark											
		CO 2	\checkmark					\checkmark						
		CO 3			\checkmark									
		CO 4			\checkmark									
	CE 316	CO	\checkmark	\checkmark										\checkmark
		1 CO	\checkmark	\checkmark	\checkmark									\checkmark
		2 CO			\checkmark									\checkmark
	CE 320	3 CO	\checkmark											
		1 CO		\checkmark										
		2 CO					√							
		3 CO			\checkmark									
		4 CO			•	\checkmark								
Level	CE 401	5 CO				v								
-4	CE 401	1											√	
Term -1		CO 2											\checkmark	
		CO 3											\checkmark	
		CO 4			\checkmark									
		CO 5 CO											\checkmark	
		CO 6							\checkmark					
	CE 411	CO 1	\checkmark											
		CO 2	\checkmark	1	1		1			1				
		CO 3		\checkmark										
		CO 4		\checkmark										
	CE 441	4 CO 1	\checkmark			\checkmark								
		СО		\checkmark	\checkmark									
		2 CO		\checkmark										
		3 CO	\checkmark	\checkmark										
		4												

Level	Course	CO	PO	PO1	PO1	PO1								
and Term	s	s	1	2	3	4	5	6	7	8	9	0	1	2
		CO 5			\checkmark									
	CE 451	CO 1	\checkmark											
		СО	\checkmark					\checkmark						
		2 CO 3		\checkmark										
		CO 4			\checkmark									
	CE 452	CO 1	\checkmark											
		CO 2	\checkmark	\checkmark		\checkmark								
		CO 3	\checkmark		\checkmark									
	CE 400	5 CO 1		\checkmark										
		1 CO 2								\checkmark				\checkmark
		2 CO 3				\checkmark								
		CO			\checkmark									
		4 CO				\checkmark								\checkmark
		5 CO								\checkmark				
		6 CO										\checkmark		
	CE 404	7 CO					\checkmark							
		1 CO									\checkmark			
		2 CO						\checkmark	\checkmark					
		3 CO								\checkmark				
		4 CO												\checkmark
		5 CO											\checkmark	
		6 CO										\checkmark		
	CE 410	7 CO	\checkmark											
		1 CO	\checkmark	\checkmark										
		2 CO	\checkmark	\checkmark	\checkmark									
		3 CO			\checkmark									
		4 CO		\checkmark			\checkmark							
		5												

Level	Course	CO	PO	PO1	PO1	PO1								
and Term	s	S	1	2	3	4	5	6	7	8	9	0	1	2
Level	CE 403	CO						\checkmark	\checkmark			\checkmark		
-4 Term -2		1 CO						\checkmark	\checkmark					
-2		2 CO												
		3		\checkmark	\checkmark			\checkmark						
		CO 4			\checkmark			\checkmark						
		CO						\checkmark						
		5 CO		\checkmark				\checkmark						
		6		·										
		CO 7			\checkmark			\checkmark						
	CE 404	CO 1					\checkmark							
		CO									\checkmark			
		2 CO						\checkmark	√					
		3						v	•					
		CO 4								\checkmark				
		CO 5												\checkmark
		CO											\checkmark	
		6 CO										\checkmark		
	GT 40.5	7										×		
	CE 405	CO 1						\checkmark					\checkmark	
		CO 2						\checkmark						\checkmark
		CO									\checkmark	\checkmark		
		3 CO											\checkmark	
		4											v	
	CE 400	CO 1		\checkmark										
		CO 2				\checkmark				\checkmark				\checkmark
		CO		\checkmark		\checkmark								
		3 CO			\checkmark									
		4			×									
		CO 5		\checkmark		\checkmark								\checkmark
		СО								\checkmark				\checkmark
		6 CO										\checkmark		\checkmark
	CE 413	7 CO	\checkmark											
		1												
		CO 2	\checkmark	\checkmark	\checkmark	\checkmark								
L	1	. –	I	I	L	I	1	1		1	<u> </u>	I	1	1

Level	Course	CO	PO	PO	PO	PO1	PO1	PO1						
and Term	s	s	1	2	3	4	5	6	7	8	9	0	1	2
		CO 3	\checkmark	\checkmark	\checkmark	\checkmark								
	CE 415	CO 1	\checkmark											
		CO 2 CO		\checkmark										
		3		\checkmark										
		CO 4			\checkmark									
		CO 5	\checkmark											
		CO 6	\checkmark		\checkmark									
	CE 419	CO 1	\checkmark											
		CO 2	\checkmark											
		CO 3		\checkmark										
		CO 4		\checkmark										
		CO 5		\checkmark										
		CO 6			\checkmark									
		CO 7					\checkmark							
	CE 421	CO 1	\checkmark		\checkmark			\checkmark						
		CO 2	\checkmark											
		CO 3 CO	\checkmark	\checkmark										
		4	\checkmark				\checkmark							
	CE 433	CO 5	√											
	CE 433	CO 1 CO	√ 											
		2 CO	\checkmark	√ 										
		3 CO		\checkmark	\checkmark									
		4 CO	\checkmark	\checkmark	\checkmark			\checkmark						
	CE 435	5 CO	\checkmark	√	√			\checkmark						
	UL 433	1 CO												
		2 CO		\checkmark										
		3		V				\checkmark	\checkmark					

Level and	Course s	CO s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
Term	3				5	-	5	Ŭ	<i>'</i>	0		U		2
		CO 4		\checkmark										
		CO 5	\checkmark					\checkmark	\checkmark					
		CO 6	\checkmark											
	CE 437	CO 1	\checkmark					\checkmark	\checkmark					
		CO 2	\checkmark					\checkmark	\checkmark					
		CO 3	\checkmark		\checkmark			\checkmark	\checkmark					
		CO 4							\checkmark					
		CO 5	\checkmark	\checkmark				\checkmark	\checkmark					
	CE 443	CO 1	\checkmark		\checkmark									
		CO 2		\checkmark	\checkmark									
		CO 3		\checkmark	\checkmark									
		CO 4		\checkmark	\checkmark									
	CE 445	CO 1	\checkmark											\checkmark
		CO 2	\checkmark											\checkmark
		CO 3		\checkmark	\checkmark									\checkmark
		CO 4		\checkmark		\checkmark								\checkmark
	CE 447	CO 1	\checkmark	\checkmark										
		1 CO 2 CO			\checkmark									
		3	\checkmark	\checkmark										
		CO 4			\checkmark									
		CO 5	\checkmark		\checkmark									
	CE 455	CO 1	\checkmark											
		CO 2	\checkmark					\checkmark						
		CO 3 CO			\checkmark									
		CO 4			\checkmark									
		CO 5		\checkmark										
		CO 6			\checkmark				\checkmark					

Level and Term	Course s	CO s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
	CE 457	CO 1	\checkmark											
		CO 2		\checkmark										
		CO 3			\checkmark									
		CO 4		\checkmark				\checkmark		\checkmark				

19. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

Course	COs	K1	K	K	K	K	K	K	K	Р	Р	Р	Р	Р	Р	Р	Α	Α	Α	Α	Α
No.			2	3	4	5	6	7	8	1	2	3	4	5	6	7	1	2	3	4	5
CE 100	CO-1	\checkmark		\checkmark	\checkmark																
100	CO-2	\checkmark		\checkmark	\checkmark																
	CO-3	\checkmark		\checkmark	\checkmark																
	CO-4	\checkmark		\checkmark	\checkmark																
CE 101	CO-1	✓		✓	\checkmark																
	CO-2	√		√	√																
	CO-3	√		√	√																
	CO-4	✓		\checkmark	\checkmark																
CE 102	CO-1		✓				√														
	CO-2	✓	\checkmark	\checkmark		✓	\checkmark														
	CO-3	\checkmark	√		\checkmark	√	√														
	CO-4	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark														
CE	CO-1	\checkmark		\checkmark																	
103	CO-2	✓		\checkmark	\checkmark																
	CO-3	✓		\checkmark	\checkmark																
	CO-4	\checkmark		\checkmark	\checkmark																
СЕ	CO-1	✓		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark												
104	CO-2	✓		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark												
СЕ	CO-1								\checkmark												
200	CO-2	\checkmark		\checkmark	\checkmark				\checkmark												
	CO-3						\checkmark		\checkmark												

Course No.	COs	K1	K 2	К 3	K 4	K 5	K 6	K 7	K 8	P 1	P 2	P 3	P 4	P 5	P 6	P 7	A 1	A 2	A 3	A 4	A 5
	CO-4								\checkmark												
	CO-5	\checkmark		\checkmark	\checkmark				\checkmark												
CE	CO-1	\checkmark		\checkmark	\checkmark																
201	CO-2	\checkmark		\checkmark	\checkmark																
	CO-3	\checkmark		\checkmark	\checkmark																
	CO-4					\checkmark															
CE	CO-1	\checkmark	\checkmark	\checkmark	\checkmark																
202	CO-2	\checkmark	\checkmark	\checkmark	\checkmark																
	CO-3	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark												
	CO-4	\checkmark	\checkmark	\checkmark	\checkmark																
	CO-5	\checkmark	\checkmark	\checkmark	\checkmark																
	CO-6	\checkmark	\checkmark	\checkmark	\checkmark																
СЕ	CO-1	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark													
203	CO-2	\checkmark	\checkmark	\checkmark	>				>												
	CO-3	\checkmark	\checkmark	\checkmark	>				>												
	CO-4	\checkmark	\checkmark	\checkmark	>	\checkmark		\checkmark													
	CO-5	\checkmark	\checkmark	\checkmark	>	\checkmark															
	CO-6	\checkmark	\checkmark	<	<		>														
СЕ	CO-1	\checkmark	\checkmark	\checkmark	\checkmark																
204	CO-2	\checkmark	\checkmark	\checkmark	>		\searrow														
	CO-3	\checkmark	\checkmark	\checkmark	>		$\overline{}$														
	CO-4	\checkmark	\checkmark	\checkmark	>		>														
	CO-5	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark														
CE	CO-1	\checkmark	\checkmark	\checkmark	\checkmark																
205	CO-2	\checkmark	\checkmark	\checkmark	\checkmark																
	CO-3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark															
CE	CO-1						\checkmark														
206	CO-2						\checkmark														
	CO-3	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark														
CE	CO-1	\checkmark	\checkmark	\checkmark	\checkmark																
207	CO-2	\checkmark	\checkmark	\checkmark	\checkmark																
	CO-3	\checkmark	\checkmark	\checkmark	\checkmark																
	CO-4	\checkmark	\checkmark	\checkmark	\checkmark																
	CO-5	\checkmark	\checkmark	\checkmark	\checkmark																
CE	CO-1	\checkmark	\checkmark	\checkmark	\checkmark																
208	CO-2	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark														
	CO-3	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark														
	CO-4	\checkmark	\checkmark	>	>			>													
CE	CO-1																				
210	CO-2																				
	CO-1	\checkmark	\checkmark	\checkmark	\checkmark																

Course	COs	K1	K	K	K	K	K	K	K	Р	Р	Р	Р	Р	Р	Р	A	A	A	Α	Α
No. CE	CO-2		2	3	4	5	6	7	8	1	2	3	4	5	6	7	1	2	3	4	5
211	CO-2 CO-3	\checkmark	\checkmark	\checkmark	\checkmark																
		√	\checkmark	\checkmark	✓ ✓	-			-								-	-	-	-	
CE	CO-4	✓	\checkmark	\checkmark	\checkmark	-			-								-	-	-	-	
CE 212	CO-1			\checkmark																	
	CO-2			\checkmark				\checkmark													
	CO-3	\checkmark		\checkmark	✓																
~~~	CO-4			$\checkmark$	$\checkmark$																
CE 213	CO-1	<b>√</b>	✓	$\checkmark$																	
210	CO-2	✓	$\checkmark$	$\checkmark$																	
	CO-3	$\checkmark$	$\checkmark$	$\checkmark$																	
	CO-4		$\checkmark$	$\checkmark$	$\checkmark$																
	CO-5	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
	CO-6	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
	CO-7			$\checkmark$	$\checkmark$																
	CO-8		$\checkmark$		$\checkmark$																
CE 300	CO-1							$\checkmark$													
300	CO-2																				
	CO-3																				
CE 301	CO-1				$\checkmark$																
501	CO-2					$\checkmark$															
	CO-3					$\checkmark$															
	CO-4					$\checkmark$															
	CO-5							$\checkmark$													
	CO-6							$\checkmark$													
CE 302	CO-1						$\checkmark$														
502	CO-2					$\checkmark$															
	CO-3						$\checkmark$														
	CO-4						$\checkmark$														
	CO-5						$\checkmark$														
CE	CO-1			$\checkmark$	$\checkmark$																
311	CO-2				$\checkmark$																
	CO-3			$\checkmark$	$\checkmark$																
	CO-4				$\checkmark$																
	CO-5		$\checkmark$	$\checkmark$	$\checkmark$																
	CO-6				>																
CE	CO-1	$\checkmark$	$\checkmark$	$\checkmark$	>																
315	CO-2	$\checkmark$			>	>															
	CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
	CO-4	$\checkmark$			>	>															
	CO-5	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$															
	CO-1			$\checkmark$	$\checkmark$				$\checkmark$	$\checkmark$									$\checkmark$		

Course No.	COs	K1	K 2	К 3	K 4	K 5	K 6	K 7	K 8	Р 1	P 2	P 3	P 4	P 5	P 6	P 7	A 1	A 2	A 3	A 4	A 5
CE	CO-2	✓	<i>⊥</i> √	<i>3</i> ✓	- <	5	U	/	•	⊥ √	2	$\checkmark$	-	5	U	/	1	<i>2</i> √	<i>3</i> √	-	5
316	CO-3	√	√	·	· ~	$\checkmark$			•	✓		•				$\checkmark$	$\checkmark$	•	•		$\checkmark$
	CO-4	√	√	• •	•	• •				• •						•	•		$\checkmark$		-
СЕ	CO-1	$\checkmark$	√	·	·	√				•									•		
317	CO-2	$\checkmark$	·	·	✓	-															
	CO-3	$\checkmark$	√	✓	V	$\checkmark$															
	CO-4	-	√	√	✓	-															
	CO-5	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
	CO-6	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
	CO-7	✓	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
CE	CO-1			$\checkmark$	$\checkmark$	$\checkmark$															
319	CO-2			$\checkmark$	$\checkmark$	$\checkmark$															
	CO-3	✓	✓	$\checkmark$	$\checkmark$	$\checkmark$															
	CO-4			$\checkmark$	$\checkmark$	$\checkmark$															
	CO-5			$\checkmark$	$\checkmark$	$\checkmark$															
	CO-6	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
	CO-7	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
	CO-8	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
	CO-9	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
	CO-10	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
СЕ	CO-1			$\checkmark$	$\checkmark$																
320	CO-2			$\checkmark$	$\checkmark$																
	CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$														
	CO-4					>															
CE	CO-1	$\checkmark$						>									$\checkmark$				
331	CO-2				$\checkmark$	$\checkmark$	$\checkmark$										$\checkmark$				
	CO-3				$\checkmark$	$\checkmark$	$\checkmark$										$\checkmark$				
	CO-4		$\checkmark$			$\checkmark$											$\checkmark$				
	CO-5	$\checkmark$				$\checkmark$	$\checkmark$										$\checkmark$				
CE	CO-1								$\checkmark$												
332	CO-2						$\checkmark$		$\checkmark$												
	CO-3			$\checkmark$					$\checkmark$												
CE 333	CO-1	$\checkmark$			$\checkmark$			$\checkmark$													
333	CO-2		$\checkmark$	$\checkmark$		$\checkmark$															
	CO-3				$\checkmark$			$\checkmark$													
	CO-4					$\checkmark$		$\checkmark$													
	CO-5			$\checkmark$	$\checkmark$	$\checkmark$															
	CO-6	$\checkmark$			$\checkmark$																
	CO-7	$\checkmark$			✓																
	CO-8			$\checkmark$	$\checkmark$	$\checkmark$															
	CO-1	$\checkmark$			$\checkmark$																

Course No.	COs	K1	K 2	К 3	K 4	K 5	K 6	K 7	K 8	P 1	P 2	P 3	P 4	Р 5	P 6	P 7	A 1	A 2	A 3	A 4	A 5
CE	CO-2	$\checkmark$			$\checkmark$																
341	CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
	CO-4	$\checkmark$	✓	$\checkmark$	$\checkmark$																
	CO-5	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
	CO-6	$\checkmark$	✓	$\checkmark$	$\checkmark$																
	CO-7	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
	CO-8	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CE	CO-1	$\checkmark$		$\checkmark$	$\checkmark$				$\checkmark$												
342	CO-2	$\checkmark$		$\checkmark$	$\checkmark$				$\checkmark$												
	CO-3	$\checkmark$		$\checkmark$	$\checkmark$				$\checkmark$												
CE	CO-1			$\checkmark$																	
351	CO-2							$\checkmark$													
	CO-3					$\checkmark$															
	CO-4					$\checkmark$															
CE	CO-1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$					$\checkmark$									$\checkmark$		$\checkmark$
400	CO-2			$\checkmark$	$\checkmark$					$\checkmark$									$\checkmark$		$\checkmark$
	CO-3							$\checkmark$											$\checkmark$		
	CO-4								$\checkmark$	$\checkmark$		$\checkmark$					$\checkmark$				$\checkmark$
	CO-5					$\checkmark$						$\checkmark$	$\checkmark$				$\checkmark$				
	CO-6								$\checkmark$	$\checkmark$									$\checkmark$		
	CO-7							$\checkmark$									$\checkmark$				
СЕ	CO-1				$\checkmark$																
401	CO-2				$\checkmark$																
	CO-3				$\checkmark$																
	CO-4					√															
	CO-5						$\checkmark$														
	CO-6							$\checkmark$													
CE	CO-1							$\checkmark$													
403	CO-2							$\checkmark$													
	CO-3							$\checkmark$													
	CO-4							$\checkmark$													
	CO-5							$\checkmark$													
CE	CO-1						$\checkmark$			$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$		$\checkmark$		
404	CO-2							$\checkmark$										$\checkmark$			
	CO-3							$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$		
	CO-4							$\checkmark$					<b>\</b>								
	CO-5									$\checkmark$					$\checkmark$					$\checkmark$	
	CO-6									$\checkmark$	$\checkmark$		$\checkmark$					$\checkmark$		$\checkmark$	
	CO-7																				
CE	CO-1	$\checkmark$																			
405	CO-2	$\checkmark$																			

Course No.	COs	K1	К 2	К 3	K 4	K 5	K 6	K 7	K 8	P 1	P 2	P 3	P 4	Р 5	P 6	P 7	A 1	A 2	A 3	A 4	A 5
	CO-3	$\checkmark$																			
	CO-4	√																			
СЕ	CO-1	$\checkmark$																			
410	CO-2				$\checkmark$																
	CO-3		√		$\checkmark$																
	CO-4					$\checkmark$															
	CO-5						$\checkmark$														
СЕ	CO-1	$\checkmark$	$\checkmark$																		
411	CO-2		$\checkmark$	$\checkmark$	$\checkmark$																
	CO-3		<b>√</b>	$\checkmark$	$\checkmark$																
	CO-4		$\checkmark$	$\checkmark$	$\checkmark$																
	CO-5		$\checkmark$	$\checkmark$	$\checkmark$																
	CO-6				$\checkmark$																
СЕ	CO-1	$\checkmark$																			
413	CO-2		$\checkmark$	$\checkmark$																	
	CO-3			$\checkmark$	$\checkmark$																
	CO-4				$\checkmark$	$\checkmark$															
СЕ	CO-1	$\checkmark$																			
415	CO-2	√	$\checkmark$																		
	CO-3		$\checkmark$	$\checkmark$																	
	CO-4	√				$\checkmark$															
	CO-5				$\checkmark$																
	CO-6	$\checkmark$				$\checkmark$															
СЕ	CO-1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
419	CO-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$					$\checkmark$			$\checkmark$								
	CO-3		$\checkmark$	$\checkmark$	$\checkmark$					$\checkmark$			$\checkmark$								
	CO-4		$\checkmark$	$\checkmark$						$\checkmark$			$\checkmark$								
	CO-5		$\checkmark$	$\checkmark$						$\checkmark$		$\checkmark$	$\checkmark$								
	CO-6		$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$			<	<	$\checkmark$	<			$\checkmark$					
	CO-7		$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					
CE	CO-1	$\checkmark$	$\checkmark$		$\checkmark$																
421	CO-2		$\checkmark$	$\checkmark$	$\checkmark$																
	CO-3		$\checkmark$		$\checkmark$																
	CO-4		$\checkmark$		$\checkmark$																
	CO-5		$\checkmark$		$\checkmark$																
CE	CO-1	$\checkmark$			$\checkmark$																
433	CO-2			$\checkmark$																	
	CO-3			$\checkmark$	$\checkmark$	$\checkmark$															
	CO-4				$\checkmark$	$\checkmark$		$\checkmark$													
	CO-5				$\checkmark$	$\checkmark$		$\checkmark$													
	CO-1	$\checkmark$																			

Course No.	COs	K1	К 2	К 3	K 4	К 5	K 6	K 7	K 8	P 1	P 2	P 3	P 4	P 5	P 6	P 7	A 1	A 2	A 3	A 4	A 5
CE	CO-2		_	√	_	-	-	-	-		_	-		-	-				-		
435	CO-3	$\checkmark$			$\checkmark$			$\checkmark$													
	CO-4	$\checkmark$		$\checkmark$																	
	CO-5				$\checkmark$			$\checkmark$													
	CO-6				$\checkmark$																
СЕ	CO-1	$\checkmark$						$\checkmark$													
437	CO-2	$\checkmark$						$\checkmark$													
	CO-3		$\checkmark$					$\checkmark$	$\checkmark$												
	CO-4							$\checkmark$													
	CO-5	$\checkmark$	$\checkmark$					$\checkmark$													
CE	CO-1	$\checkmark$		$\checkmark$	$\checkmark$				$\checkmark$												
441	CO-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
	CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
	CO-4	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
	CO-5					$\checkmark$															
СЕ	CO-1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
443	CO-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
	CO-3	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$															
	CO-4	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$															
CE	CO-1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
445	CO-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
	CO-3	$\checkmark$	$\checkmark$		$\checkmark$																
	CO-4	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CE	CO-1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
447	CO-2					$\checkmark$															
	CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
	CO-4					$\checkmark$															
	CO-5	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
CE	CO-1			$\checkmark$																	
451	CO-2							$\checkmark$													
	CO-3			$\checkmark$																	
	CO-4					$\checkmark$															
CE	CO-1						$\checkmark$														
452	CO-2			$\checkmark$																	
	CO-3					$\checkmark$															
CE	CO-1		$\checkmark$																		
454	CO-2					$\checkmark$															
	CO-3							$\checkmark$													
CE	CO-1			$\checkmark$																	
455	CO-2			$\checkmark$																	
	CO-3					$\checkmark$															

Course	COs	K1	K	K	K	K	K	K	K	Р	Р	Р	Р	Р	Р	Р	Α	Α	Α	Α	Α
No.			2	3	4	5	6	7	8	1	2	3	4	5	6	7	1	2	3	4	5
	CO-4					$\checkmark$															
	CO-5		$\checkmark$																		
	CO-6							$\checkmark$													
CE 457	CO-1			$\checkmark$																	
457	CO-2			$\checkmark$																	
	CO-3					$\checkmark$															
	CO-4							$\checkmark$													

# 20. Description of all courses of the program 20.1 Description of Course CE 100

- SECTION A: General Information
- 1. Course Title
- **2.** Type of Course
- **3.** Offered to

## **Civil Engineering Drawing**

Basic Engineering (Compulsory) Civil Engineering None

**4.** Pre-requisite Course(s)

#### **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Lines and lettering; plane geometry: drawing of linear and curved geometric figures, e.g., pentagon, hexagon, octagon, ellipse, parabola, hyperbola; solid geometry: concept of isometric view and oblique view, theory of projections; drawing of isometric view of 3d objects such as cube, prism, pyramid, cone, and cylinder; projections of cube, prism, cone, cylinder; developments of cube, pyramid, cone, cylinder; plan, elevations, and sections of one storied and duplex building.

- 6. Course Objectives
  - To introduce basic geometric figures associated with engineering drawing
  - To familiarize with different views and projections of any object
  - To introduce building drawings with plan and sectional views
- 7. Knowledge required

Preliminary knowledge in geometry

8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>comprehend</i> the basics of engineering drawing	PO(a)	C2	Lectures, Assignment	Class assessment, Quiz
2	<i>interpret</i> building drawing plan, elevation & section of two storied building	PO(a)	C2	Lectures, Assignment	Class assessment, Quiz
3	<i>perform</i> the task related to civil engineering drawing	PO(a)	C2	Lectures, Assignment	Class assessment, Quiz
4	apply concepts of engineering drawing	PO(a) PO(l)	C3	Lectures, Assignment	Class assessment, Quiz

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

A4 A5	A3 A4	A2	A1	P7	P6	P5	P4	P3	P2	P1	K8	K7	K6	K5	K4	K3	K2	K1	COs
															$\checkmark$	$\checkmark$		$\checkmark$	CO-1
	┢───╂───																		<u> </u>
															$\checkmark$	$\checkmark$		$\checkmark$	CO-2
															$\checkmark$	$\checkmark$		$\checkmark$	CO-3
															$\checkmark$	$\checkmark$		$\checkmark$	CO-4
															~	~		~	CO-4

#### **10.** Lecture Plan

Class No.	Topics	References	Correspondin g CO(s)
Lecture 1	Introduction, lettering & Numbering	Handout, Book	CO1
Lecture 2	Drawing of Regular Polygons	Handout, Book	CO1
Lecture 3	Drawing of curved geometric figures and theory of projection	Handout, Book	CO1
Lecture 4	1st and 3rd angle projection and drawing of isometric objects	Handout, Book	CO1
Lecture 5	45° projection method	Handout, Book	CO1
Lecture 6	Review class of geometric drawing	Handout, Book	CO1
Lecture 7	MID QUIZ	Handout, Book	CO3
			CO4
Lecture 8	Introduction to Building Drawing: Plan, Elevation &	Handout, Book	CO1
	Section of one Room Building		CO2
Lecture 9	One storied building drawing: Plan, Elevation and	Handout, Book	CO1
	Section		CO2
Lecture 10	Two storied building drawing: Plan, Elevation and	Handout, Book	CO1
	Section		CO2
Lecture 11	Zigzag and Inclined section of two storied building	Handout, Book	CO1
			CO2
Lecture 12	Review of Building drawing	Handout, Book	CO1
			CO2
Lecture 13	FINAL QUIZ	Handout, Book	CO3
			CO4

#### 11. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment:
  - 6 to 7 Class Assessments will be taken
    - Assessment will be based on either the topic taught on that day or topic taught on the previous day or combination of the two topics.
  - Assignment and/or homework will be provided to ensure the active engagement even outside class hours.
- Quizzes: Two no's quizzes will be administered.

Item	Marks
Attendance	10%
Assignment	30%
Class Assessment	20%
Quiz	40%

13. Textbook

- 1. **"Technical Drawing"** by Frederick E. Giesecke, Alva Mitcheel, Henry Cecil Spencer, Ivan Leroy Hill, John Thomas Dygdon
- 2. Class Lecture Handout
- 14. References
  - 1. **"Engineering Drawing"** by D.N. Ghose.
  - 2. "Civil Engineering Drawing" by D.N. Ghose.
  - 3. "Civil Engineering Drawing" by Gurcharan Singh and Subhash Chander Sharma.

#### 20.2 Description of Course CE 101

#### **SECTION A: General Information**

- 1. Course Title
- 2. Type of Course
- **3.** Offered to

**Analytic Mechanics** 

- Basic Engineering (Compulsory) **Civil Engineering**
- **4.** Pre-requisite Course(s) None

## **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Coplanar and non-coplanar force systems; moments; analyses of two- dimensional frames and trusses; friction; flexible chords; centroids of lines, areas, and volumes; moments of inertia of areas and masses; plane motion; principles of work and energy; impulse and momentum; virtual work principle for rigid bodies.

- 6. Course Objectives
  - To introduce different force systems
  - To familiarize with two dimensional trusses
  - To introduce virtual work principal
- 7. Knowledge required

Preliminary knowledge in force systems

**8.** Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>comprehend</i> different force systems on rigid bodies under static equilibrium	PO(a) PO(b)	C2	Lectures, Book	Class Test, Final Exam
2	<i>compute</i> section properties of structural members	PO(a) PO(b)	C3	Lectures, Book	Class Test, Final Exam
3	<i>comprehend</i> dynamic equilibrium of rigid bodies	PO(a) PO(b)	C2	Lectures, Book	Class Test, Final Exam
4	<i>apply</i> energy methods for static and dynamic problems of rigid bodies	PO(a) PO(b)	C3	Lectures, Book	Class Test, Final Exam

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$		$\checkmark$	$\checkmark$																
CO-2	~		$\checkmark$	$\checkmark$																
CO-3	$\checkmark$		$\checkmark$	$\checkmark$																
CO-4	$\checkmark$		$\checkmark$	$\checkmark$																

#### **10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)		
Lecture 1	Introduction of Mechanics	Lecture, Book	CO1		
Lecture 2	Force and free body diagram	Lecture, Book	CO1		
Lecture 3	Introduction to the course	Lecture, Book	CO1		
Lecture 4-5	Concurrent Coplanar Forces and equilibrium	Lecture, Book	CO1 CO2		
Lecture 6	Kinematics of rectilinear motion of particles	Lecture, Book	CO3		
Lecture 7-8	Parallel Coplanar Forces and equilibrium	Lecture, Book	CO1 CO2		
Lecture 9	Kinematics of curvilinear motion of particles	Lecture, Book	CO3		
Lecture 10-11	Nonparallel nonconcurrent coplanar Forces and equilibrium	Lecture, Book	CO1 CO2		
Lecture 12	Kinetics of friction problems; Class test on kinematics.	Lecture, Book	CO3		
Lecture 13	2D Frame Analysis	Lecture, Book	CO1 CO2		
Lecture 14	Kinetics of suspended bodies	Lecture, Book	CO3		
Lecture 15-16	2D Truss Analysis	Lecture, Book	CO1 CO2		
Lecture 17	Kinetics of Simple Harmonic Motion	Lecture, Book	CO3		
Lecture 18-19	Friction	Lecture, Book	CO1		
Lecture 20	Work and energy principle of a body in linear motion	Lecture, Book	CO4		
Lecture 21	Class Test 1	Lecture, Book	CO1		
Lecture 22-23	Non-coplanar Forces and equilibrium	Lecture, Book	CO1 CO2		
Lecture 24	Work and energy principle of a rotating body	Lecture, Book	CO4		
Lecture 25-26	Flexible chords	Lecture, Book	CO1 CO2		
Lecture 27	Application of work and energy principle of a body in combined motion	Lecture, Book	CO4		
Lecture 28-30	Centroids of lines, areas, and volumes	Lecture, Book	CO1		
Lecture 31	Impulse and momentum; Class test on work and energy principle.	Lecture, Book	CO4		
Lecture 32-34	Moments of inertia of areas	Lecture, Book	CO1		
Lecture 35	Angular impulse and angular momentum	Lecture, Book	CO4		
Lecture 36	Class Test 2	Lecture, Book	CO2		
Lecture 37-39	Moments of inertia of masses	Lecture, Book	CO1		
Lecture 40	Application of impulse and momentum principle of a body in combined motion	Lecture, Book	CO4		
Lecture 41-42	Principle of virtual work	Lecture, Book	CO4		

**11.** Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least four class tests will be administered. Best three of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

#### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Test	20%
Final Examination	70%

#### 13. Textbook

- 1. "Analytical Mechanics" Ferries and Chambers
- 14. References
  - 1. "Engineering Mechanics: Dynamics" by Meriam & Kraige, 7th Edition
  - 2. "A Textbook of Engineering Mechanics" by Khurmi, 20th Edition
  - 3. "Vector Mechanics for Engineers" by Beer et al., 9th Edition
  - 4. "Engineering Mechanics" by Shames, 4th Edition
  - 5. "Engineering Mechanics" by Hibbeler, 12th Edition

#### 20.3 Description of Course CE 102

#### **SECTION A: General Information**

1.	Course Title	<b>Computer Aided Drafting</b>
2.	Type of Course	Basic Engineering (Compulsory)
3.	Offered to	Civil Engineering
4.	Pre-requisite Course(s)	None

#### **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Introduction to computer usage; introduction to CAD packages and computer aided drafting: drawing editing and dimensioning of simple objects; plan, elevations, and sections of multi-storied buildings; reinforcement details of beams, slabs, stairs etc; plan and section of septic tank; detailed drawings of roof trusses; plans, elevations and sections of culverts, bridges, and other hydraulic structures; drawings of building services.

- 6. Course Objectives
  - To introduce CAD packages and computer aided drafting
  - To draw different views and projections of any object using computer aided drafting
  - To introduce different building components and civil engineering structures
- 7. Knowledge required

Preliminary knowledge in civil drawing

8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Correspondin g PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>explain</i> the basics of AutoCAD drawing	PO(b) PO(e) PO(i) PO(l)	C2	Lectures, Assignment	Class assessment, Quiz
2	<i>interpret</i> views and dimensions of basic engineering objects with the help of draw, modify etc. tools.	PO(a) PO(b) PO(c) PO(d) PO(e) PO(i)	C2	Lectures, Assignment	Class assessment, Quiz

CO No.	CO Statement	Correspondin g PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
3	<i>produce</i> plans & elevation views and structural elements of buildings including the reinforcement details	PO(a) PO(b) PO(c) PO(d) PO(e) PO(i)	C3	Lectures, Assignment	Class assessment, Quiz
4	<i>analyse</i> a given plan of building or structural element, <i>decide</i> on appropriate command tools and <i>develop</i> section views in AutoCAD.	PO(a) PO(b) PO(c) PO(d) PO(e)	C4, C5, C6	Lectures, Assignment	Class assessment, Quiz

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

#### 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1		$\checkmark$				$\checkmark$														
CO-2	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$														
CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$														
CO-4	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$														

#### 10. Lecture Plan

Class No.	Topics	References	Correspondin g CO(s)
Lecture 1	<ol> <li>AutoCAD Screen</li> <li>X-Y Co-Ordinate System</li> <li>Angular Measurement</li> <li>Drawing Units &amp; Limits</li> <li>AutoCAD Basics (Toolbars, Menus, Keystrokes)</li> <li>Drawing Commands (Introduction to Drawing &amp; Modifying Commands – Line &amp; Erase)</li> <li>Entering points in AutoCAD (Absolute &amp; Relative)</li> </ol>	Lecture, Book	CO1
	<ol> <li>Viewing of Object (Zooming &amp; Panning)</li> <li>Object Selection</li> <li>Drawing Aids (Ortho, Grid, Snap, Polar Tracking, The Function Keys)</li> <li>Object Snaps</li> <li>Accurate Input</li> </ol>		

Class No.	Topics	References	Correspondin g CO(s)
Lecture 2	<ul> <li>(a) Drawing Commands (Construction Line, Ray, Polyline, Rectangle, Polygon, Donut, Revcloud, Circle, Arcs, Spline, Ellipse, Ellipse Arc, Region, Wipeout, Points &amp; Point Styles, Multiline &amp; Multiline Styles etc)</li> <li>(b) Basic Drawing skills</li> </ul>	Lecture, Book	CO1
Lecture 3	<ul> <li>(a) Modifying Commands (Copy, Mirror, Offset, Array, Move, Rotate, Scale, Stretch, Lengthen, Trim, Extend, Break, Break at Point, Chamfer, Fillet, Explode etc.)</li> <li>(b) Modifying Objects</li> </ul>	Lecture, Book	CO1 CO2
Lecture 4	<ul> <li>(a) Concept of Layers</li> <li>(b) Creating a New Layer, Setting Colour, Line Type &amp; Line With</li> <li>(c) Controlling Layer Status</li> <li>(d) Drawing in Layers</li> <li>(e) Changing Object Properties</li> <li>(f) Match Properties</li> <li>(g) Renaming a Layer, deleting a Layer, Purging Layers &amp; Line types etc.</li> </ul>	Lecture, Book	CO1 CO2
Lecture 5	<ul> <li>(a) Text writing, Editing, &amp; Creating Text Styles</li> <li>(b) Hatching &amp; edits an existing Hatch</li> <li>(c) Make Blocks, Write Blocks &amp; Insert Blocks</li> <li>(d) Using Design Centre &amp; Tool Palettes</li> <li>(e) Using Express Tools</li> <li>(f) Printing (Setting up Printers, Page Setup, Printing in Model Space)</li> <li>(g) Printing (Make a Layout &amp; Printing with Layout)</li> <li>(h) Class Assessment</li> </ul>	Lecture, Book	CO1 CO2
Lecture 6	Reinforcement details of beams, columns, slabs, stairs, foundation; plan and section of septic tank	Lecture, Book	CO3 CO4
Lecture 7	Final Quiz (Written)	Lecture, Book	CO1 CO2
Lecture 8	Plot longitudinal and transverse sections of beams in AutoCAD	Lecture, Book	CO3 CO4
Lecture 9	Plot column sections and foundation with reinforcement details in AutoCAD Class Assessment	Lecture, Book	CO3 CO4
Lecture 10	Plot stair with reinforcement details in AutoCAD Class Assessment	Lecture, Book	CO3 CO4
Lecture 11	Plot plan view and sections of slab with reinforcement details in AutoCAD	Lecture, Book	CO3 CO4
Lecture 12	Plot plan and section of septic tank.	Lecture, Book	CO3 CO4
Lecture 13	Plot plans, elevations and sections of culverts, bridges, and other hydraulic structures; Detailed drawings of roof trusses	Lecture, Book	CO3 CO4
Lecture 14	AutoCAD quiz (computer based)	Lecture, Book	CO3 CO4

11. Assessment Strategy

• Class Participation: Class participation and attendance will be recorded in every class.

- Continuous Assessment:
  - 6 to 7 Class Assessments will be taken
  - Assessment will be based on either the topic taught on that day or topic taught on the previous day or combination of the two topics.
  - Assignment and/or homework will be provided to ensure the active engagement even outside class hours.
- Quizzes: Two no's quizzes will be administered.

#### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Assignment	20%
Class Assessment	30%
Quizzes	40%

#### 13. Textbook

- 1. "Mastering AutoCAD and AutoCAD LT" by George Omura, Brain C. Benton
- 2. "AutoCAD & AutoCAD LT" by Ellen Finkelstein

#### 14. References

6. "AutoCAD" by Prof. Sham Tickoo

#### 20.4 Description of Course CE 103

#### **SECTION A: General Information**

1. Course Title

## Surveying

- 2. Type of Course Basic Engineering (Compulsory)
- **3.** Offered to

Civil Engineering None

4. Pre-requisite Course(s)

# SECTION B: Course Details

5. Course Content (As approved by the Academic Council)

Reconnaissance survey; linear measurements; traverse survey; triangulation, leveling and contouring; calculation of areas and volumes; problems on heights and distances; curves and curve ranging, transition curve, vertical curves; tacheometry: introduction, principles and problems on tacheometry; astronomical surveying: definition, instruments, astronomical corrections, systems of time; photogrammetry: introduction of terrestrial photography, aerial photography, reading of photo mosaic, scale; project surveying; errors in surveying; remote sensing; introduction to geographic information system (GIS) and global positioning system (GPS).

- 6. Course Objectives
  - To introduce different survey techniques
  - To familiarize with modern survey tools and techniques
  - To introduce astronomical surveying
- 7. Knowledge required

Preliminary knowledge in geometry

#### 8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>explain</i> principles and techniques of basic and advanced surveying	PO(a)	C2	Lectures, Book	Class Test, Final Exam
2	<i>estimate</i> various parameters required for plotting topographic and contour maps for various projects	PO(a) PO(b)	C2	Lectures, Book	Class Test, Final Exam
3	<i>determine</i> necessary design components of horizontal and vertical curves in roadways	PO(a) PO(b)	C4	Lectures, Book	Class Test, Final Exam
4	<i>calculate</i> land areas and volumes for cut and fills for a field project	PO(a)	C4	Lectures, Book	Class Test, Final Exam

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$		$\checkmark$																	
CO-2	$\checkmark$		$\checkmark$	$\checkmark$																
CO-3	$\checkmark$		$\checkmark$	$\checkmark$																
CO-4	$\checkmark$		$\checkmark$	$\checkmark$																

10. Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1-3	Introductory class: course contents and lecture plan.	Lecture, Book	CO1
Lecture 4	Introduction on Photogrammetry Surveying	Lecture, Book	CO1
Lecture 5	Curves and curve ranging- alignment design; Types of curves; Definition and elements of simple curve.	Lecture, Book	CO3
Lecture 6	Reconnaissance survey	Lecture, Book	CO1
Lecture 7	Elevation of a point and its determination	Lecture, Book	CO2
Lecture 8	Terrestrial Photographs	Lecture, Book	CO1
Lecture 9	Curve setting- Linear and angular methods of curve setting.	Lecture, Book	CO3
Lecture 10	Linear measurements	Lecture, Book	CO1
Lecture 11	Surveying operations	Lecture, Book	CO1
Lecture 12	Transition Curve – Characteristics of transition curve;	Lecture, Book	CO1
Lecture 13	Chain surveying	Lecture, Book	CO3
Lecture 14	Problems of height and distance	Lecture, Book	CO1
Lecture 15	Lecture on Aerial Photographs	Lecture, Book	CO2
Lecture 16	Super-elevation and design considerations;	Lecture, Book	CO1

Lecture 17	Class Test 1	Lecture, Book	CO3
Lecture 18	Computation of area - Trapezoidal rule	Lecture, Book	CO1
Lecture 19	Different parameters of Aerial Photographs	Lecture, Book	CO4
Lecture 20	Exercise problems on horizontal curves.	Lecture, Book	CO1
Lecture 21	Compass and Theodolite	Lecture, Book	CO3
Lecture 22	Computation of area - Simpson's rule	Lecture, Book	CO1
Lecture 23	Examples of some mathematical problems related to Photogrammetry Surveying	Lecture, Book	CO4
Lecture 24	Vertical curves- Vertical curve fundamentals; Design of vertical curves.	Lecture, Book	CO1
Lecture 25	Traverse survey	Lecture, Book	CO3
Lecture 26	Computation of volume	Lecture, Book	CO1
Lecture 28	Mathematical problems related to Photogrammetry Surveying	Lecture, Book	CO4
Lecture 29	Exercise problems on vertical curves.	Lecture, Book	CO1
Lecture 30	Traverse survey	Lecture, Book	CO3
Lecture 31	Computation of volume	Lecture, Book	CO1
Lecture 32	Class Test 2	Lecture, Book	CO4
Lecture 33	Class Test 3	Lecture, Book	CO1
Lecture 34	Class Test 4	Lecture, Book	CO3
Lecture 35	Curvature correction of volume	Lecture, Book	CO1
Lecture 36	Instruments of levelling	Lecture, Book	CO4
Lecture 37	Tacheometry- Introduction; principle of stadia method; Distance and elevation formula;	Lecture, Book	CO2
Lecture 38	Leveling	Lecture, Book	CO1
Lecture 39	Astronomical surveying	Lecture, Book	CO2
Lecture 40	Leveling	Lecture, Book	CO1
Lecture 41	Exercise problems on tacheometry;	Lecture, Book	CO2
Lecture 42	Leveling	Lecture, Book	CO1
Lecture 43	Mathematical problems related to leveling Surveying	Lecture, Book	CO2
Lecture 44	Astronomical surveying - problems on transit	Lecture, Book	CO2
Lecture 45	Mathematical problems related to leveling Surveying	Lecture, Book	CO1
Lecture 46	Contouring	Lecture, Book	CO2
Lecture 47	Astronomical surveying - spherical trigonometry	Lecture, Book	CO2
Lecture 48	Project surveying.	Lecture, Book	CO1
Lecture 49-50	Errors in surveying	Lecture, Book	CO1
			CO2
			CO3
Lecture 51	Astronomical surveying - problems on time	Lecture, Book	CO1
Lecture 52	Modern survey tools	Lecture, Book	CO1
Lecture 53-56	Review	Lecture, Book	

11. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least four class tests will be administered. The best three of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

#### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Test	20%
Final Examination	70%

- 13. Textbook
  - 1. "Surveying" Volume: 2 & 3 by B.C. Punmia
  - 2. "A textbook of surveying" by M. A. Aziz and M. Shahjahan

#### 14. References

Lecture materials provided by course teacher

#### 20.5 Description of Course CE 104

#### **SECTION A: General Information**

**1.** Course Title

#### **Practical Surveying**

- 2. Type of Course Basic Engineering (Compulsory)
- 3. Offered to Civil Engineering
- **4.** Pre-requisite Course(s)

#### **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

# Linear and angular measurement techniques; traverse surveying; leveling and contouring; curve setting; tacheometry; project surveying; modern surveying equipment and their applications.

- **6.** Course Objectives
  - To introduce Linear and angular measurement techniques; traverse surveying; leveling and contouring; tacheometry; and traverse surveying
  - To demonstrate project surveying
  - To familiarize with modern surveying equipment and their applications

None

7. Knowledge required

Preliminary knowledge in surveying

8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>apply</i> basic survey and mapping techniques for civil infrastructure	PO(a) PO(b) PO(d) PO(e) PO(i) PO(j)	C3	Lectures, Assignment	Practical Demonstration, Viva, Quiz
2	<i>execute</i> field setting out of road curves, house plan, contour plan and route project using conventional and modern survey tools	PO(a) PO(c) PO(e) PO(i)	C2	Lectures, Assignment	Practical Demonstration, Viva, Quiz

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

management and finance; PO(l): life-long learning **C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$												
CO-2	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$												

#### **10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Registration Issue of Instruments Instruction & Handling of all Instruments	Lecture, Book	CO1
Lecture 2	Quiz on Instruments Chain & Plane Table Survey	Lecture, Book	CO1
Lecture 3	Leveling and Closed Traverse	Lecture, Book	CO1
Lecture 4	Curve Setting	Lecture, Book	CO1 CO2
Lecture 5	Boarding on Bus at 7:15 am. Bus starts for the survey spot at 7:30 am sharp Instruction & Assignment (Contouring & Project Surveying: Reconnaissance)	Lecture, Book	CO1 CO2
Lecture 6	Leveling and Closed Traverse Boarding on Bus at 7:15 am Bus starts for the survey spot at 7:30 am sharp Instruction & Assignment (Project Surveying: Traversing, Plane Tabling and Leveling)	Lecture, Book	CO1 CO2
Lecture 7	Stadia Survey, Height, and distance problem	Lecture, Book	CO1
Lecture 8	Introduction of EDM, Total Station & GPS House Setting	Lecture, Book	CO2
Lecture 9	Final Quiz & Practical Oral Examination Return of Instruments as per the program to be circulated later.	Lecture, Book	CO1 CO2

#### **11.** Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment:
  - 6 to 7 Practical Demonstration will be taken
  - The practical Demonstration will be based on either the topic taught on that day
  - Assignments and/or homework will be provided to ensure active engagement even outside class hours.
- Viva: One viva will be administered.
- Quizzes: Two no's quizzes will be administered.

#### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Assignment	20%
Practical Demonstration	20%
Viva	20%
Quiz	30%

#### 13. Textbook

- 1. "Surveying" by Dr.B.C.Punmia
- 14. References
  - 1. "Surveying" by M Shahjahan and M.A.Aziz
  - 2. "Surveying for Engineers" by J.Uren and W.F.Price

#### 20.6 Description of Course CE 200

#### **SECTION A: General Information**

1.	Course Title	<b>Details of Construction</b>
2.	Type of Course	Basic Engineering (Compulsory)

- 3. Offered to Civil Engineering
- **4.** Pre-requisite Course(s) None

#### **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Types of building, components of a building, design loads, framed structure and load bearing wall structure; foundations: shallow foundation and deep foundation, site exploration, bearing capacity of soil, standard penetration test; brick masonry: types of brick, bonds in brickwork, supervision of brickwork, brick laying tools, defects and strength on brick masonry, typical structures in brickwork, load bearing and non-load bearing walls, cavity walls, partition walls; lintels and arches: different types of lintels and arches, loading on lintels, construction of arches; stairs: different types of stairs, floors: ground floors and upper floors; roofs and roof coverings; shoring; underpinning; scaffolding and formwork; plastering, pointing, painting; distempering and white washing; cement concrete construction; sound insulation: acoustics; thermal insulation; house plumbing: water supply and wastewater drainage.

- 6. Course Objectives
  - To introduce different civil engineering structures
  - To familiarize different construction techniques
  - To introduce different construction materials
- 7. Knowledge required

Preliminary knowledge in civil engineering structures

8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>compare</i> different types of building, components of a building, design loads and service loads, framed structure and load bearing wall structure.	PO(d)	C2	Lectures, Assignment	Class assessment, Presentation, Quiz
2	<i>discover</i> different foundation types, site exploration techniques, methods related to determining bearing capacity of soil.	PO(a) PO(d)	C2	Lectures, Assignment	Class assessment, Presentation, Quiz
3	<i>present</i> the advantages and disadvantages of brick masonry as well as the associated building components.	PO(d) PO(e)	C3	Lectures, Assignment	Class assessment, Presentation, Quiz

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
4	<i>describe</i> the importance of shoring, underpinning, scaffolding, and formwork in civil engineering construction.	PO(d)	C2	Lectures, Assignment	Class assessment, Presentation, Quiz
5	<i>explain</i> the necessity of plastering, pointing, painting, distempering, white washing, sound insulation, thermal insulation, water supply and wastewater drainage in construction and operation of civil engineering structures.	PO(a) PO(d)	C2	Lectures, Assignment	Class assessment, Presentation, Quiz

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing P.Psychomotor: P1: Percention: P2: Set: P3: Guided Response: P4: Mechanism: P5: Complex Overt Re

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1								$\checkmark$												
CO-2	~		$\checkmark$	$\checkmark$				$\checkmark$												
CO-3						$\checkmark$		$\checkmark$												
CO-4								$\checkmark$												
CO-5	$\checkmark$		$\checkmark$	$\checkmark$				$\checkmark$												

**10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)	
Lecture 1-2	Types of Building and its Components; Load types	Lecture, Book	CO1	
Lecture 3	Framed structure, Load bearing wall structure	Lecture, Book	CO1	
Lecture 4-5	Site Exploration and Different types of foundation	Lecture, Book	CO2	
Lecture 6	Features of concrete	Lecture, Book	CO1	
Lecture 7	Beam, column & slab construction	Lecture, Book	CO1	
Lecture 8	Brick masonry structures	Lecture, Book	CO3	
Lecture 9-10	Building services: Plumbing & water supply	Lecture, Book	CO5	
Lecture 11	Lintels and arches: different types of lintels and arches	Lecture, Book	CO1	
Lecture 12	Elements of Roof and stair	Lecture, Book	CO1	
Lecture 13	Shoring, underpinning, scaffolding, and formwork	Lecture, Book	CO4	
Lecture 14	Plastering, pointing, painting; distempering and white washing	Lecture, Book	CO5	

#### 11. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment:
  - 6 to 7 Class Assessments will be taken
  - Assessment will be based on either the topic taught on that day or topic taught on the previous day or combination of the two topics.
  - Assignment and/or homework will be provided to ensure the active engagement even outside class hours.
- Quizzes: Two no's quizzes will be administered.
- Presentation: One group presentation will be administered.

#### 12. Distribution of Marks

Item	Marks
Attendance	10%
Assignment and Class Assessment	30%
Presentation	10%
Quiz	50%

13. Textbook

- 1. "Building Construction" by Sushil Kumar.
- 14. References
  - 1. "Building Construction" by Rangawala.
  - 2. Lecture Notes on CE 200.

# 20.7 Description of Course CE 201 SECTION A: General Information

- Course Title
   Type of Course
   Basic Engineering (Compulsory)
- **3.** Offered to Civil Engineering
- 4. Pre-requisite Course(s) None

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Properties and uses of aggregates, brick, cement; sand, lime, mortars; concrete; concrete mix design; wood structures and properties; shrinkage and seasoning; treatment and durability; mechanical properties; wood products; advanced fiber reinforced polymer (FRP) composites and its application to civil engineering; reinforcement types, basic property of FRP composites and available FRP composite products; definition of stress and strain; plane stress and strain condition; identification of strain components of elastic, elasto-plastic and elasto-visco-plastic materials; time dependent strain response of these materials due to different types of loadings; mathematical and simple rheological modeling for prediction of creep behavior; ferrocement: advantages and uses; corrosion and prevention of steel in RC structures, offshore structures and ground applications.

- **6.** Course Objectives
  - To introduce different engineering materials and their uses.
- 7. Knowledge required

Preliminary knowledge in materials.

#### 8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>comprehend</i> the behavior, characteristics, and significance of various construction materials.	PO(a) PO(b)	C2	Lectures, Book	Class Test, Final Exam
2	<i>apply</i> the concept of stress-strain behavior to understand the strain- response of different materials.	PO(a) PO(b)	C3	Lectures, Book	Class Test, Final Exam
3	<i>discuss</i> the corrosion behavior and its control measures for steel and RCC structures	PO(a)	C2	Lectures, Book	Class Test, Final Exam
4	<i>design</i> concrete mix considering various parameters using standard guidelines and practices.	PO(c)	C6	Lectures, Book	Class Test, Final Exam

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$		$\checkmark$	$\checkmark$																
CO-2	$\checkmark$		$\checkmark$	$\checkmark$																
CO-3	$\checkmark$		$\checkmark$	$\checkmark$																
CO-4					$\checkmark$															

#### **10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1-4	Stress-Strain Behavior	Lecture, Book	CO2
Lecture 5	Introduction to Engineering Materials	Lecture, Book	CO1
Lecture 6	Introduction	Lecture, Book	CO1
Lecture 7	Metals and Alloys	Lecture, Book	CO1
Lecture 8	Properties and uses of cement	Lecture, Book	CO4
Lecture 9	Properties and classification of sand	Lecture, Book	CO1
Lecture 10	Class Test-1	Lecture, Book	CO1
			CO2
Lecture 11	Properties and uses of cement	Lecture, Book	CO4
Lecture 12	Field and Laboratory tests of sand including sieve	Lecture, Book	CO1
	analysis and water absorption		
Lecture 13	Ferrocement	Lecture, Book	CO2
Lecture 14	Properties and uses of cement	Lecture, Book	CO4
Lecture 15	Properties and classification of Stones	Lecture, Book	CO1
Lecture 16-17	Corrosion and It's Prevention	Lecture, Book	CO2
Lecture 18	Class Test-1	Lecture, Book	CO1
			CO4

Class No.	Topics	References	Corresponding CO(s)
Lecture 19	Classification and characteristics of Aggregates, blending of aggregates	Lecture, Book	CO1
Lecture 20	Class Test- 2	Lecture, Book	CO2
Lecture 21	Properties and uses of brick	Lecture, Book	CO1
Lecture 22	Class Test 1	Lecture, Book	CO1
Lecture 23	Plastic	Lecture, Book	CO1
Lecture 24	Properties and uses of brick	Lecture, Book	CO1
Lecture 25	Introduction to concrete and Its Components, Stress & Strength	Lecture, Book	CO4
Lecture 26	Rubber	Lecture, Book	CO1
Lecture 27	Properties and uses of lime, mortars & other finishing materials	Lecture, Book	CO4
Lecture 28	Properties of Concrete; problems associated with fresh and hardened concrete	Lecture, Book	CO4
Lecture 29	Glass	Lecture, Book	C01
Lecture 30	Properties and uses of lime, mortars & other finishing materials	Lecture, Book	CO4
Lecture 31	Introduction to Concrete Mix Design, Old methods of mix design	Lecture, Book	CO4
Lecture 32	Insulating Materials	Lecture, Book	CO1
Lecture 33	Properties and uses of lime, mortars & other finishing materials	Lecture, Book	CO4
Lecture 34	British Method of Mix Design	Lecture, Book	CO4
Lecture 35	ACI Method of Mix Design	Lecture, Book	CO4
Lecture 36	Properties and uses of lime, mortars & other finishing materials	Lecture, Book	CO4
Lecture 37	Example Problems of Mix Design	Lecture, Book	CO4
Lecture 38-39	Wood structures and properties	Lecture, Book	CO1
Lecture 40	Properties and uses of lime, mortars & other finishing materials	Lecture, Book	CO4
Lecture 41	Properties and classification of Mortars	Lecture, Book	CO4
Lecture 42	Review	Lecture, Book	CO4

#### 11. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least four class tests will be administered. Best three of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

# **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Test	20%
Final Examination	70%

#### 13. Textbook

- 1. "Concrete Technology" by A. M. Neville and J.J. Brooks.
- 14. References
  - 1. "Building Materials" by G. Singh.
  - 2. "Engineering materials" by M A Aziz
  - 3. Lecture materials provided by course teacher

# 20.8 Description of Course CE 202 SECTION A: General Information

- 1. Course Title Materials Sessional
- 2. Type of Course Basic Engineering (Compulsory)
- **3.** Offered to

Civil Engineering None

4. Pre-requisite Course(s)

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

General discussion on preparation and properties of concrete, test for specific gravity, unit weight, voids and bulking of aggregates; moisture content and absorption of coarse and fine aggregates; normal consistency, initial setting time, soundness and fineness test of cement; direct tensile and compressive strengths of cement mortar; gradation of coarse and fine aggregates; design and testing of a concrete mix, sampling and testing of bricks for absorption, unit weight, efflorescence and compressive strength.

- 6. Course Objectives
  - To introduce variables relevant to physical properties of various construction materials
  - To identify appropriate instrumentation and technique to measure physical and mechanical properties of construction materials

#### 7. Knowledge required

- Preliminary knowledge in materials
- 8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>identify</i> dependent and independent variables relevant to physical properties of various construction materials including cement, brick, aggregates and concrete.	PO(a), PO(i)	C4	Lectures, Class participation	Class Test, Lab Report, Quiz
2	<i>identify</i> appropriate instrumentation and technique to measure physical and mechanical properties of construction materials	PO(a), PO(i)	C4	Lectures, Class participation	Class Test, Lab Report, Quiz
3	<i>record</i> and <i>analyze</i> experimental data in a meaningful way	PO(a), PO(b), PO(d), PO(i)	C4	Lectures, Class participation	Class Test, Lab Report, Quiz
4	<i>apply</i> critical thinking and judgments about the results of experiment	PO(a), PO(b), PO(i)	C3	Lectures, Class participation	Class Test, Lab Report, Quiz
5	<i>recognize</i> the importance of various properties of cement, brick and aggregates as it relates to construction	PO(a), PO(i)	C4	Lectures, Class participation	Class Test, Lab Report, Quiz

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
6	<i>evaluate</i> effect of various parameters on concrete quality and strength	PO(a), PO(i)	C5	Lectures, Class participation	Class Test, Lab Report, Quiz

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

#### 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$												
CO-4	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-5	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-6	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																

#### **10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction to Engineering Materials Lab Tests	Materials Sessional Laboratory Manual	CO1
Lecture 2	Determination of Normal Consistency of Cement Using Vicat's Apparatus	Materials Sessional Laboratory Manual	CO2 CO3 CO4 CO5 CO6
Lecture 3	Determination of Initial Setting Time of Cement Using Vicat's Apparatus	Materials Sessional Laboratory Manual	CO2 CO3 CO4 CO5 CO6
Lecture 4	Determination of Compressive Strength of Hydraulic Cement Mortars	Materials Sessional Laboratory Manual	CO2 CO3 CO4 CO5 CO6
Lecture 5	Determination of Soundness of Cement by Expansion of Cement Mortar Bars	Materials Sessional Laboratory Manual	CO2 CO3 CO4

Class No.	Topics	References	Corresponding CO(s)
			CO5 CO6
Lecture 6	Mid Term Viva and Quiz		
Lecture 7	Determination of Fineness of Cement by Air Permeability Apparatus	Materials Sessional Laboratory Manual	CO2 CO3 CO4 CO5 CO6
Lecture 8	Determination of Compressive Strength of Concrete Using Cylindrical and Cube Specimens	Materials Sessional Laboratory Manual	CO2 CO3 CO4 CO5 CO6
Lecture 9	Testing and Sampling of Bricks for Compressive Strength, Efflorescence and Absorption	Materials Sessional Laboratory Manual	CO2 CO3 CO4 CO5 CO6
Lecture 10	Sieve Analysis of Fine and Coarse Aggregate	Materials Sessional Laboratory Manual	CO2 CO3 CO4 CO5 CO6
Lecture 11	Determination of Specific Gravity and Absorption of Fine and Coarse Aggregate	Materials Sessional Laboratory Manual	CO2 CO3 CO4 CO5 CO6
Lecture 12	Determination of Unit Weight & Voids in Fine and Coarse Aggregate	Materials Sessional Laboratory Manual	CO2 CO3 CO4 CO5 CO6
Lecture 13	Review Class		
Lecture 14	Final Viva and Quiz		

#### 11. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least eight class tests will be administered. Best five of them will be counted towards grading.
- Mid and Final Quiz: Two comprehensive quiz examinations will be held during mid-term and at the end of the Term following the guideline of academic Council.

#### 12. Distribution of Marks

Item	Marks
Attendance	10%
Class Tests/ Assessments	20%
Lab Report	15%
Mid Quiz	20%
Final Quiz	20%
Mid Viva	7.5%
Final Viva	7.5%

13. Textbook

"CE 202 Materials Sessional Laboratory Manual" by Snigdha Afsana, Assistant Professor, Department of Civil Engineering, BUET.

14. References

- 1. Engineering Materials by M A Aziz;
- 2. Properties of Concrete by A.M Neville;
- 3. Building Materials by Gurcharan Sing

# 20.9 Description of Course CE 203

## **SECTION A: General Information**

1.	Course Title	Engineering Geology and Geomorphology
2.	Type of Course	Basic Engineering (Compulsory)
3.	Offered to	Civil Engineering
4.	Pre-requisite Course(s)	None

## **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Minerals; identification of minerals, common rock forming minerals; physical properties of minerals; mineraloids rocks; types of rocks, cycle of rock change; earthquake and seismic map of Bangladesh. Structural geology; faults; types of faults; fold and fold type; domes; basins; erosional process; quantitative analysis of erosional land forms. Channel development; channel widening; valley shape; stream terraces; alluvial flood plains; deltas and alluvial fans; channel morphology; channel patterns and the river basin; geology and geomorphology of Bangladesh.

- 6. Course Objectives
  - To describe the importance of geology and geomorphology in civil engineering projects
  - To explain various technical terms used in geological and geomorphological investigation reports
  - To analyse geological information for assessment of geological hazards
- 7. Knowledge required
  - Preliminary knowledge in basic geology.
- 8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*
1	<i>describe</i> the importance of geology and geomorphology in civil engineering projects	PO(a), PO(f)
2	<i>explain</i> various technical terms used in geological and geomorphological investigation reports	PO(a), PO(d)
3	<i>apply</i> basic concepts of geological formation for better understanding of geological information/data	PO(b), PO(d)

CO No.	CO Statement	Corresponding PO(s)*
4	analyse geological information for assessment of geological hazards	PO(b), PO(c), PO(g)
5	<i>discuss</i> basic concepts of geomorphological formation for better understanding of interaction with the civil engineering infrastructure	PO(a), PO(c)
6	<i>apply</i> geomorphological processes for assessment of infrastructure-based project impacts in the long run	PO(a), PO(b)

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$													
CO-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$												
CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$												
CO-4	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$													
CO-5	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
CO-6	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																

10. Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Week 1	Introductory class: course contents and lecture plan	Handnotes	CO1
Week 2-3.5	Minerals	Handnotes	CO2 CO3 CO4
Week 3.5- 4.5	Geological Time and Principles of Formation	Handnotes	CO2 CO3 CO4
Week 4.5-6	Rocks, Rock cycle	Handnotes	CO2 CO3 CO4
Week 7-7.5	Class Test 1		
Week 7.5- 9.5	Erosional Process and erosional landforms	Handnotes	CO2 CO3 CO4
Week 9.5-11	Plate Tectonics, Earthquake Mechanism, Faults and Folds, Seismic Hazard Map of Bangladesh	Handnotes	CO2 CO3 CO4
Week 12- 12.5	Class Test 2		
Lecture 12.5- 13	Domes and Basins, Mountain formation, Sea-bed features, Volcanoes, Lakes	Handnotes	CO2 CO3 CO4
Week 14	Review		

Class No.	Topics	References	Corresponding CO(s)
Week 1	Introduction	Handnotes	CO1
Week 2	Channel development	Handnotes	CO5
			CO6
Week 3	Channel widening	Handnotes	CO5 CO6
Week 4	Valley shape	Handnotes	CO5
			CO6
Week 5	Stream terraces	Handnotes	CO5
*** 1 <			CO6
Week 6	Alluvial flood plains		CO5 CO6
Week 7	Deltas and alluvial fans	Handnotes	CO5
			CO6
Week 8	Class Test 1		
Lecture 9	Channel morphology	Handnotes	CO5
	1 00		CO6
Week 10	Channel patterns and the river basin	Handnotes	CO5
			CO6
Week 11	Channel patterns and the river basin	Handnotes	CO5
			CO6
Week 12	Channel patterns and the river basin	Handnotes	CO5
			CO6
Week 13	Class Test 2		
Week 14	Review		

11. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least four class tests will be administered. Best three of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

12. Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

13. Textbook

- 1. "Physical and Engineering Geology", by S.K. Garg, Khanna Publishers
- 2. "Structural Geology" by Marland P. Billings, Prentice-Hall of India

14. References

1. Lecture Materials provided by course teachers

# 20.10 Description of Course CE 204 SECTION A: General Information

- 1. Course Title Computer Programming Sessional
- 2. Type of Course Basic Engineering (Compulsory)
- **3.** Offered to
- **4.** Pre-requisite Course(s)

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Programming concepts and algorithms; internal representation of data; elements of structured programming language: data types, operators, expressions, control structures, functions, pointers and arrays, input and output; concept of Object-Oriented Programming (OOP): encapsulation, inheritance, polymorphism and abstraction.

#### 6. Course Objectives

• Familiarize students with the control structures of programming language such as conditional statements, loops, functions

**Civil Engineering** 

None

- Introduce students to the concept of object-oriented programming
- Develop the ability to think about the algorithm by analysing a problem and convert that into a computer program in C++ language
- 7. Knowledge required

Basic computer operating skill

- 8. Course Outcomes
  - At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>depict</i> programming concepts and algorithms as well as write and run basic programs related to engineering (CO1)	PO(a), PO(b), PO(e)	C2	Lectures, Homework	hands-on programming; MCQ
2	distinguish different data types, operators, expressions. (CO2)	PO(b), PO(e)	C4	Lectures, Homework	hands-on programming; MCQ
3	<i>interpret</i> different control statements used in the programming language and apply the knowledge for solving engineering problems. (CO3)	PO(b), PO(e)	C3	Lectures, Homework	hands-on programming; MCQ
4	<i>discover</i> the necessity of functions, pointers and arrays in the application of programming language. (CO4)	PO(b), PO(e)	C3	Lectures, Homework	hands-on programming; MCQ
5	<i>explain</i> the concept of Object-Oriented Programming and gather sound knowledge about encapsulation, inheritance, polymorphism and abstraction. (CO5)	PO(b), PO(e)	C2	Lectures, Homework	hands-on programming; MCQ

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

CO-1	~	$\checkmark$	$\checkmark$	$\checkmark$	~							
CO-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$							
CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$							
CO-4	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$							
CO-5	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$							

#### **10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)	
Lecture 1	Introduction to C++, Parts of a Program	Handout Schaum's Ch. 01	CO1	
Lecture 2	Variables and Declaration, Input Output Operators, Data, Data-types	Handout Schaum's Ch. 01	CO1 CO2	
Lecture 3	Arithmetic Operators, Conditional and Logical Operators Class Assessment 01	Handout Schaum's Ch. 02	CO1 CO2 CO3	
Lecture 4	Loops	Handout Schaum's Ch. 03	CO1 CO3	
Lecture 5	Functions Class Assessment 02	Handout Schaum's Ch. 04	CO1 CO4	
Lecture 6	<i>Object Oriented Programming 01:</i> Idea of class, passing objects to functions, Access modifier (public & private)	Handout Schaum's Ch. 08	CO1 CO5	
Lecture 7	Mid-term quiz May include a hands-on portion in addition to MCQ			
Lecture 8	<i>Object Oriented Programming 02:</i> Constructor, Destructor, Inheritance	Handout Schaum's Ch. 08 & 11	CO1 CO5	
Lecture 9	Introduction to 1-D and 2-D array Class Assessment 03	Handout Schaum's Ch. 05	CO1 CO2	
Lecture 10	Solving problems using array: e.g., matrix manipulation, sorting	Handout Schaum's Ch. 05	CO1 CO2 CO3	
Lecture 11	Pointers Class Assessment 04	Handout Schaum's Ch. 06	CO1 CO4	
Lecture 12	File Input-output Object Oriented Programming 03: Abstraction, Polymorphism Class Assessment 05	Handout Schaum's Ch. 12 & Ch. 11	CO1 CO5	
Lecture 13	Final Quiz May include a hands-on portion in addition to MCQ			

Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment:
  - 4 to 5 hands-on Class Assessments using C++
  - Assessment will be based on either the topic taught on that day or topic taught on the previous day or combination of the two topics

- In addition to hands-on assessment, MCQ type assessments may be conducted in each class using google form/ google classroom.
- Assignment and/or homework will be provided to ensure the active engagement even outside class hours.
- Quizzes: Two quizzes will be administered. At least one exam will include a hand-on demonstration of C++ knowledge using a C++ IDE such as Code: Blocks. Both the quizzes will include an MCQ portion.

#### 11. Distribution of Marks

Item	Marks
Attendance	10%
Assignment/ Homework/ File	10%
Class Assessment	40%
Quizzes (2 Nos: Hands-on and/or Written/MCQ)	40%

#### 12. Textbook

- 1. Teach Yourself C++ by Herbert Schildt
- 2. Theory and Problems of Programming with C++ by John R. Habbard (Schaum's Outline Series)
- 3. Class Lecture Handout
- 13. References
  - 1. Object Oriented Programming with C++ by E BalaguruSamy
  - 2. MIT OpenCourseWare: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-096-introduction-to-c-january-iap-2011/

# 20.11 Description of Course CE 205

#### **SECTION A: General Information**

1.	Course Title	Numerical Methods
2.	Type of Course	Basic Engineering (Compulsory)
3.	Offered to	Civil Engineering
4.	Pre-requisite Course(s)	None

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Systems of linear algebraic equations; interpolation and curve fitting; roots of equations; numerical differentiation; numerical integration; initial value problems; two-point boundary value problems; finite differences.

- 6. Course Objectives
  - To introduce with various numerical methods
  - To apply numerical methods to solve mathematical and engineering problems
- 7. Knowledge required
  - Preliminary knowledge in algebra, calculus, matrix.

#### 8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>distinguish</i> the difference between numerical and analytical solution methods	PO(a)	C2	Lectures, Class participation	Class test, final examination
2	<i>apply</i> numerical methods to solve mathematical and engineering problems including finding roots of equations, solve differential equations, numerical integration and differentiation, solve algebraic equations, ordinary and partial differential equations	PO(a), PO(b)	C3	Lectures, Class participation	Class test, final examination
3	<i>apply</i> least squares regression and interpolation to elucidate trends of datasets.	PO(a), PO(c)	C3	Lectures, Class participation	Class test, final examination

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															

# **10.** Lecture Plan-1

Sl	Topics	Reference	Corresponding COs
1	Introduction to Numerical Methods	Textbook, hand note	CO1
2.	Errors in numerical computing, truncation, round-off errors	Textbook, hand note	CO1 CO2 CO3
3	Solution to algebraic and transcendental equations, bracketing methods: bi-section and Regula Falsi	Textbook, hand note	CO2 CO3
4	Solution to algebraic and transcendental equations, open methods: iteration, Newton-Raphson, Secant, Modified Newton-Raphson	Textbook, hand note	CO2 CO3
5	Curve fitting: Linear Least squares regression, polynomial regression, assessing the goodness-of-fit	Textbook, hand note	CO2 CO3
6	Curve fitting: multiple linear regression, fitting non- linear curves	Textbook, hand note	CO2 CO3
7	Solution of ODE initial value problems: Euler's method, error estimation in Euler's method	Textbook, hand note	CO2 CO3
8	Solution of ODE initial value problems: Predictor- Corrector (Heun's) Method, Mid-point method, 4th Order Runge-Kutta method	Textbook, hand note	CO2 CO3
9	Solution of ODE initial value problems: a system of ODE, higher order ODE. Solution of Boundary value problems: shooting method	Textbook, hand note	CO2 CO3
10	Solution of Boundary value problems: method of finite differences. Solution of PDE: Laplace equations with Drichlet boundary conditions	Textbook, hand note	CO2 CO3
11	Solution of PDE: Laplace equations with Neumann boundary conditions. Solution of parabolic PDE using explicit method	Textbook, hand note	CO2 CO3
13	Solution of parabolic PDE using implicit methods	Textbook, hand note	CO2 CO3
14	Class test-2		
15	Introduction to Numerical Methods	Textbook, hand note	CO1
16	Solution of system of linear equations: Matrices, determinants	Textbook, hand note	CO1 CO2 CO3
17	Solution of system of linear equations: Gauss elimination, Gauss Jordan	Textbook, hand note	CO2 CO3

SI	Topics	Reference	Corresponding COs
18	Solution of system of linear equations: Crout's method, matrix inversion	Textbook, hand note	CO2 CO3
19	Interpolation: Graphical, Linear, Polynomial	Textbook, hand note	CO2 CO3
20	Class Test and Interpolation: Gregory Newton,		
21	Interpolation: Lagrangian, Finite Difference	Textbook, hand note	CO2 CO3
22	Numerical Integration: Trapezoidal and Simpson's rules	Textbook, hand note	CO2 CO3
23	Numerical Integration: Product of Integrals	Textbook, hand note	CO2 CO3
24	Numerical Integration: Romberg's Quadrature, Integration over a rectangular domain	Textbook, hand note	CO2 CO3
25	Numerical Integration: Gauss Quadrature	Textbook, hand note	CO2 CO3
26	Numerical Differentiation: Mathematical molecules	Textbook, hand note	CO2 CO3
27	Numerical Differentiation: Partial differentiation	Textbook, hand note	CO2 CO3
28	Class test and review		

#### 11. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least three class tests will be administered. Best two of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

#### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

13. Textbook

1. Numerical Methods for Engineers: Chapra & Canale References

## 14. Reference Materials:

- a. Numerical Methods: E Balagurusamy
- b. Introductory Methods of Numerical Analysis: Sastry
- c. Numerical Analysis: Goel and Mittal
- d. Numerical Mathematical Analysis: JB Scarborough

# 20.12 Description of Course CE 206

## SECTION A: General Information

- 1. Course Title
   Engineering Computation Sessional
- 2. Type of Course Basic
- Offered to
   Pre-requisite Course(s)

Basic Engineering (Compulsory) Civil Engineering CE 204

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Introduction to hi-level computational programming tools; application to numerical analysis: basic matrix computation, solving systems of linear equations, non-linear equations, differential equations, interpolation and curve fitting, numerical differentiation, numerical integration; application to engineering problems: solving problems related to mechanics, numerical solution of equation of motion etc.

- 6. Course Objectives
  - To teach the students fundamental of MATLAB programming and its application in engineering field
  - To prepare the students so that they can apply MATLAB in their problem analysis and solving.
- 7. Knowledge required

Basic programming knowledge in any language, linear algebra

8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	write basic codes to solve programming problems using MATLAB	PO(e)	C1	Lectures, Homework	hands-on programming; examination; assignment
2	demonstrate competence in implementing hi-level programming tools to solve numerical computational problems (CO2)	PO(e)	C3, P5	Lectures, Homework	hands-on programming quiz, assignment
3	apply hi-level computational tools to solve civil engineering related problems (CO3)	PO(b) PO(e)	C3	Lectures, Homework	hands-on programming, project

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1						$\checkmark$														
CO-2						$\checkmark$														
CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$														

#### **10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	MATLAB Fundamentals: Basic MATLAB syntax and commands, arrays, vectors, and matrix operation, plotting	Handout	CO1
Lecture 2	e 2 MATLAB Fundamentals: Loops- <i>while, for, if-else</i> Handout scripting, function, file input-output <i>Class Assessment 1</i>		CO1
Lecture 3	Roots of equations Group formation for Project (4 Students/group)	Handout Chapra (Chapter 5 & 6)	CO1 CO2
Lecture 4	Roots of equations Class Assessment 2	Handout Chapra (Chapter 5 & 6)	CO1 CO2
Lecture 5	System of linear equations	Handout Chapra (Chapter 9 & 10)	CO1 CO2
Lecture 6	Curve fitting and interpolation Project proposal submission Class Assessment 3	Handout Chapra (Chapter 14 & 17)	CO1 CO2 CO3
Lecture 7	Numerical differentiation and integration	Chapra (Chapter 19, 20, & 21)	CO1 CO2
Lecture 8	Solving ODE Class Assessment 4	Handout Chapra (Chapter 22, 23, & 24)	CO1 CO2
Lecture 9	Fourier Transform; Eigenvalues and eigenvectors	Handout Chapra (Chapter 13, & 16)	CO1 CO2
Lecture 10	Basic statistics: descriptive statistics, distribution, hypothesis testing, regression model, ANOVA <i>Class Assessment 5</i>	Handout	CO1 CO2
Lecture 11	Project presentation (8-10 minutes) + submission		CO3
Lecture 12 Week 10 or 11	Quiz 1 (Hands-on Programming)		CO2 CO3
Week 13	Quiz 2 (Written Test)		CO1 CO2

**11.** Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment:
  - 4 to 5 hands-on Class Assessments using MATLAB
  - Assessment will be based on either the topic taught on that day or topic taught on the previous day or combination of the two topics
  - In addition to hands-on assessment, MCQ type assessments may be conducted in each class using google form/ google classroom.
  - Assignment and/or homework will be provided to ensure the active engagement even outside class hours.
- Quizzes: Two nos quizzes will be administered. One of them will be a hands-on demonstration of coding and another one will be written exam.
- Project: A project will be assigned. The project should cover fundamental numerical analysis as well as their relevant application in the Civil Engineering field.

#### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Assignment/ Homework/ File	10%
Class Assessment	30%
Quizzes (2 Nos: Hands-on and Written)	35%
Project	15%

#### 13. Textbook

- 1. Applied Numerical Methods with MATLAB for Engineers and Scientists, 4th
  - edition, by Steven C. Chapra, McGraw-Hill Education. (Chapra)
- 2. Class Lecture Handout
- 14. References
  - 4. MATLAB Primer, Mathworks Inc.

# 20.13 Description of Course CE 207

## **SECTION A: General Information**

1.	Course Title	<b>Applied Mathematics for Engineers</b>
2.	Type of Course	Basic (Compulsory)
3.	Offered to	Civil Engineering
4.	Pre-requisite Course(s)	None

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Review of differential equations; power series solution of differential equations and their applications: Frobenius method, Legendre's polynomials, gamma function, Bessel's function; integral form of differential equation and its application to engineering problem solving.

Fourier series and its properties, application to engineering problem solving; Fourier integral; Fourier transforms and their uses in solving boundary value problems; diffusion equation, wave equation, Laplace equation and their applications.

Application of statistical methods to engineering problems:

Random variables; discrete and continuous probability distributions; functions of random variables and derived distributions; expectation and moments of random variables; point estimation of distribution parameters: methods of moments and maximum likelihood, Bayesian analysis; confidence intervals; hypothesis tests; nonparametric statistical tests; simple and multiple linear regression and model selection; uncertainty and reliability analysis; project level decision making and quality control.

## **6.** Course Objectives

- To formulate and solve ODEs and PDEs for engineering problems
- To use probability to solve engineering problems
- To use Fourier method to solve engineering problems
- 7. Knowledge required
  - Preliminary knowledge in probability, calculus, function, trigonometry.

#### 8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	formulate ordinary differential equations (ODEs) for engineering problems	PO(a), PO(b)	C2	Lectures, Class participation	Class test, final examination
2	solve ordinary differential equations (ODEs) using power series.	PO(a), PO(b)	C3	Lectures, Class participation	Class test, final examination
3	apply probability theories for random variables in mathematical models of engineering problems	PO(a), PO(b)	C3	Lectures, Class participation	Class test, final examination
4	apply Fourier Transform to solve ODEs and PDEs	PO(a), PO(b)	C3	Lectures, Class participation	Class test, final examination
5	determine Fourier series of periodic functions and Fourier integrals for non-periodic functions	PO(a), PO(b)	C4	Lectures, Class participation	Class test, final examination

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-4	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-5	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																

# **10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction to the course and review of parameters of differential equations	Handout	CO1
Lecture 2	Implication of linearity of ordinary linear differential equation	Handout,	CO1
Lecture 3	Even and odd functions	Handout,	CO5
Lecture 4	Periodic functions	Handout,	CO5
Lecture 5	Introduction to Fourier Series	Handout,	CO5
Lecture 6	Examples with application in differential equations	Handout,	CO5
Lecture 7	Fourier Integral; Class test on Fourier series	Handout,	CO4
Lecture 8	From Fourier integral to Fourier transform	Handout	CO4
Lecture 9	Fourier transforms of different functions	Handout,	CO4
Lecture 10	Application of Fourier transform in differential equation	Handout,	CO4
Lecture 11	Classification of partial differential equations.	Handout,	CO4
Lecture 12	Solution of parabolic equation; Class test on Fourier transform	Handout,	CO4
Lecture 13	Solution of elliptic equation	Handout,	CO4
Lecture 14	Solution of hyperbolic equation	Handout,	CO4
Lecture 15	Course Introduction: The Role of Statistics in the Engineering Problem-Solving Process	Handout,	CO3
Lecture 16	Descriptive Statistics - Numerical and Graphical Methods	Handout,	CO 3
Lecture 17	Bayes' Theorem and Random Variables	Handout,	CO 3
Lecture 18	Discrete Random Variables and Probability Distributions	Handout,	CO 3
Lecture 19	Continuous Random Variables and Probability Distributions	Handout,	CO 3
Lecture 20	Joint Probability Mass and Density Functions	Handout,	CO 3
Lecture 21	Class Test		CO 3
Lecture 22	Standard Probability Distributions: Bernoulli and Binomial	Handout,	CO 3
Lecture 23	Standard Probability Distributions: Poisson and Uniform	Handout,	CO 3
Lecture 24	Standard Probability Distributions: Normal and Exponential	Handout,	CO 3

Class No.	Topics	References	Corresponding CO(s)
Lecture 15- 26	Central Limit Theorem	Handout,	CO 3
Lecture 27	Quality Criteria for Estimates and Methods for Parameter Estimation	Handout,	CO 3
Lecture 28	Hypothesis Testing: Variance Known, Variance Unknown	Handout,	CO 3
Lecture 29	Review of Differential Equation	Handout,	CO1
Lecture 30- 31	First order ordinary differential equation	Handout,	CO 1
Lecture 32- 33	Separable variable, Exact Solution	Handout,	CO 1
Lecture 34	Class Test		CO 1
Lecture 35	Introduction to Power series solution	Handout,	CO 2
Lecture 36- 37	Legendre's Polynomials	Handout,	CO 2
Lecture 38- 39	Bessel's Function	Handout,	CO 2
Lecture 40	Gamma Function	Handout,	CO 2
Lecture 41- 42	Frobenius Method, Class Test	Handout,	CO 2

11. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least four class tests will be administered. Best three of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

12. Distribution of Mark	s
--------------------------	---

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

# 13. Text book:

- a. Advanced Engineering Mathematics by Greenberg, Second Edition, Prentice Hall
- b. Introduction to Probability and Statistics for Engineers and Scientists, Fourth Edition, Academic Press

#### **14.** Reference materials:

- a. Higher Engineering Mathematics by Bird, 6th Edition, Elsevier
- b. Advanced Engineering Mathematics by Duffy, CRC Press
- c. Advanced Engineering Mathematics by Jeffrey, HAP
- d. Understanding Engineering Mathematics by Cox, Newnes
- e. Advanced Engineering Mathematics by Kreyszig, 10th Ed., John Wiley

# 20.14 Description of Course CE 208

## SECTION A: General Information

- 1. Course Title Quantity Surveying
- 2. Type of Course Basic Engineering (Compulsory)

None

- 3. Offered to Civil Engineering
- 4. Pre-requisite Course(s)

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Earthwork excavation for roadway, earthwork computation from spot levels; estimation for residential building: estimation of slab, beam, column, footing; analysis of rates, specifications, costing of residential building; estimation and costing of septic tank; estimation and costing of underground water reservoir; estimation and costing of retaining wall; estimation and costing of slab culvert; estimation and costing of bridges; highways construction; estimation of steel truss; computer aided quantity estimation; construction site survey and estimation.

- 6. Course Objectives
  - To introduce the method of estimation to determine the amount of materials required for construction of different structures.
  - To find out the cost of materials required to construct a structure.
- 7. Knowledge required
  - Civil Engineering drawing and interpretation of drawings, construction materials
- 8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>compute</i> amount of earthwork excavation required for construction of highways and other structures.	PO(a)	C3	Lectures, Class participation	Class test, final examination
2	<i>estimate</i> quantity of materials for different components of a residential building including both substructure and superstructure	PO(a), PO(b), PO(e)	C3, C4	Lectures, Class participation	Class test, final examination
3	<i>estimate</i> quantity of materials for different structures such as slab culvert, retaining wall, steel truss etc.	PO(a), PO(b), PO(e)	C3, C4	Lectures, Class participation	Class test, final examination
4	<i>prepare</i> a detailed bill of quantities	PO(a), PO(h)	C5	Lectures, Class participation	Class test, final examination

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

^{**}C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$														
CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$														
CO-4	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$													

#### 10. Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction	Reference Manual, Lecture Slides	
Lecture 2	Estimation of earthworks	Reference Manual , Lecture Slides	CO-1
Lecture 3	Estimation of residential building part-1	Reference Manual, Lecture Slides	CO-1,CO-2
Lecture 4	Estimation of residential building part-2	Reference Manual, Lecture Slides	CO-2
Lecture 5	Estimation of residential building part-3 and costing of residential buildings	Reference Manual, Lecture Slides	CO-2, CO-4
Lecture 6	Estimation of slab, footing	Reference Manual, Lecture Slides	CO-2, CO-4
Lecture 7	Mid quiz & Viva		
Lecture 8	Estimation of beam and column	Reference Manual, Lecture Slides	CO-2, CO-4
Lecture 9	Estimation of septic tank	Reference Manual, Lecture Slides	CO-2, CO-4
Lecture 10	Estimation of underground reservoir	Reference Manual, Lecture Slides	CO-2, CO-4
Lecture 11	Estimation of retaining wall	Reference Manual, Lecture Slides	CO-3, CO-4
Lecture 12	Estimation of slab culvert	Reference Manual, Lecture Slides	CO-3, CO-4
Lecture 13	Estimation of steel truss, highway construction, & computer aided quantity estimation	Reference Manual, Lecture Slides	CO-3, CO-4
Lecture 14	Final Quiz & Viva		

11. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least 6 class tests and class assessments will be administered. Best five of them will be counted towards grading.
- Viva: Mid Viva and Final Viva will be held during the Mid Quiz and Final Quiz week.
- Mid and Final quiz: Two comprehensive quizzes will be taken at mid and final week

#### 12. Distribution of Marks

Item	Marks
Attendance	10%
Class Assessments & Class Test	20%
Lab Report	15%
Viva	15%
Mid Quiz	15%
Final Quiz	25%

13. Textbook

a. Quantity surveying manual provided in the class

# 20.15 Description of Course CE 210

#### **SECTION A: General Information**

- 1. Course Title
   Architectural, Engineering and Planning Appreciation
- 2. Type of Course Basic Engineering (Compulsory)
- 3. Offered to Civil Engineering
- **4.** Pre-requisite Course(s)

# None

# **SECTION B: Course Details**

- Course Content (As approved by the Academic Council)
   Appreciation of architecture, mechanical engineering, urban and regional planning; environmental issues.
- **6.** Course Objectives
  - To familiarize different branches of engineering
  - To introduce problem associated with different aspects of civil engineering
- Knowledge required Preliminary knowledge in Civil Engineering
- **8.** Course Outcomes

#### At the end of the course a student should be able to

CO	CO Statement	Corresponding	Domains and	Delivery Method(s)	Assessment
No.		PO(s)*	Taxonomy	and Activity(-ies)	Tool(s)
			level(s)**		
1	develop knowledge on	PO(a)	C6	Lectures, Class	Class test,
	contemporary issues of different			participation	Quiz
	branches of engineering				
2	<i>identify</i> key considerable issues of various professions and <i>apply</i> with problems involved in different aspects of Civil Engineering	PO(b)	C3, P1	Lectures, Class participation	Class test, Quiz

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

^{**}C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1			$\checkmark$																	
CO-2			$\checkmark$																	

#### **10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introductory Class	Handout	CO1
Lecture 2-3	Class Allocated for different respected professionals based on course requirement	Handout	CO1 CO2
Lecture 4	Class Test 1, Class Allocated for different respected professionals based on course requirement	Handout	CO1 CO2
Lecture 5-6	Class Allocated for different respected professionals based on course requirement	Handout	CO1 CO2
Lecture 7	Class Test 2, Class Allocated for different respected professionals based on course requirement	Handout	CO1 CO2
Lecture 8-9	Class Allocated for different respected professionals based on course requirement	Handout	CO1 CO2
Lecture 10	Class Test 3, Class Allocated for different respected professionals based on course requirement	Handout	CO1 CO2
Lecture 11- 12	Class Allocated for different respected professionals based on course requirement	Handout	CO1 CO2
Lecture 13	Presentation		CO2

11. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least 3 class tests will be administered.
- Presentation: A brief ppt presentation will be held on relevant topics

#### 12. Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Reports	30%
Presentation	40%

13. Textbook: N/A

14. References

1. Lecture Slides provided by respective guests and professionals.

# 20.16 Description of Course CE 211

#### SECTION A: General Information

- 1. Course Title
   Mechanics of Solids 1
- Type of Course Structura
   Offered to Civil Eng
- Onered to
   Pre-requisite Course(s)

# Structural Engineering (Compulsory) Civil Engineering CE 101

**SECTION B: Course Details** 

# 5. Course Content (As approved by the Academic Council)

Concepts of stress and strain, generalized Hooke's law; deformations due to tension, compression and temperature change; frame statics: reactions, axial force, shear force and bending moments; axial force, shear force and bending moment diagrams of beams using method of section and summation approach; elastic analysis of circular shafts in torsion, solid noncircular and thin walled tubular members subjected to torsion, flexural and shear stresses in beams; shear center; closely coiled helical springs

- **6.** Course Objectives
  - To introduce problems associated with stress and strain
  - To enable students to draw a axial force, shear force and bending moment diagrams of beams using method of section and summation approach
  - To perform elastic analysis of circular shaft in torsion
  - To solve the problems related to flexural stress, shear stress and shear center

#### 7. Knowledge required

Preliminary knowledge in mechanics

#### 8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>draw</i> the free body diagrams of beams and frames and hence sketch shear force, axial force and bending moment diagrams for structures subjected to different types of loading.	PO(a) PO(b)	C3	Lectures, Class participation	Class test, final examination
2	<i>calculate</i> the stress and strain of structural members under axial load and internal pressure.	PO(a) PO(b)	C4	Lectures, Class participation	Class test, final examination
3	<i>solve</i> for bending stress-strain and shear stress using flexural stress and shear stress formula.	PO(a) PO(b)	C3	Lectures, Class participation	Class test, final examination
4	<i>determine</i> the torsional stress of solid, circular shafts and rectangular sections as well as hollow tubes.	PO(a) PO(b)	C4	Lectures, Class participation	

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

# 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-4	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																

# 10. Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction to Mechanics of Solids I Free Body and Internal Linear Force, Concept of Stress at a point, Stress Components, Stress Tensor, Differential equations of equilibrium.	Handout	CO1
Lecture 2	Axial-Shear-Bearing Stress, Deterministic Design of Members: Axially Loaded Bars, Allowable Stress. Stress concentration.	Handout	CO1 CO2 CO3
Lecture 3-4	Solution of problems covering topics of Stress.	Handout	CO2 CO3
Lecture 5-6	Strain at a point, Stress-Strain diagrams for different type of material. Hooke's Law: Modulus of Elasticity. Poisson's Ratio. Generalized Hooke's Law. Thermal strain and deformation. Idealized stress-strain relations for different material behavior. Stain energy for uni-axial loading.	Handout	CO1 CO2 CO3
Lecture 7-8	Solution of problems covering topics of Strain.	Handout	CO1 CO2
Lecture 9	Class test-1. Topic: Stress and Strain		
Lecture 10-12	Shear force, axial force and bending moment diagrams: Classification of supports, free body diagrams. Internal hinges and their behaviour. Definition of positive shear, axial force and moments.	Handout	CO1 CO3
Lecture 13-15	Construction of shear force, axial force and bending- moment diagrams for beams using method of sections.	Handout	CO1 CO2 CO3
Lecture 16-19	Construction of shear force and bending-moment diagrams for beams using Integration method: Shear Diagrams by Integration of the loadings, Moment Diagrams by Integration of the Shear.	Handout	CO1 CO3
Lecture 20	Effect of Concentrated Moment on Moment Diagrams.	Handout	CO1
Lecture 21	Class test-2. Topic: Shear force, axial force and bending moment diagrams		
Lecture 22-23	Flexural stress in beams. Kinematic Assumptions for deformation of beams subjected to bending. Derivation of Flexural stress formula for beams. Modifications to Flexural stress formula to cater for beams made with different modulus of elasticity.	Handout	CO1 CO3
Lecture 24-25	Solution of problems covering topics of Flexural stress.	Handout	CO3

Class No.	Topics	References	Corresponding CO(s)
Lecture 26-27	Shear Stress in beams. Review of relation between shear and bending moment diagrams of beams. Effect on bending stress between two sections of a beam due to change in vertical shear. Shear Flow. Shear Flow and Shear Stress formula.	Handout	CO1 CO3
Lecture 28	Class test-3. Topic: Flexural stress in beams		
Lecture 29-31	Solution of nailed and glued joint problems using shear stress formula. Calculation of vertical shear stress over different type of beam sections.	Handout	CO1 CO3
Lecture 32-33	Shear Stress in Beam Flanges. Shear Centre.	Handout	CO1 CO3
Lecture 34	Torsion Torsion of circular elastic bars, basic assumptions, Torsion formula for circular elastic bars and its limitations. Relation between work, torque and frequency.	Handout	CO1 CO4
Lecture 35	Class test-4. Topic: Shear Stress in beams.	Handout	
Lecture 36	Calculation of shear stress for circular solid and hollow sections subjected to torque.	Handout	CO1 CO4
Lecture 37-40	Design of Circular Members in Torsion for Strength. Stress Concentrations in shafts subjected to torque and having change in diameter. Angle of Twist of Circular Members. Torsion of solid non circular members. Thin walled hollow members subjected to torque.	Handout	CO1 CO4
Lecture 41-42	Introduction to Pressure Vessels. Thin walled Pressure Vessels. Longitudinal and hoop stress in pressure vessels. Connection design for pressure vessels.	Handout	CO1 CO2

#### 11. Assessment Strategy

- Class Participation: Class attendance will be recorded in every class.
- Class Test: At least three class tests will be administered. Best two of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

#### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

13. Textbook

- 1. Engineering Mechanics of Solids: Egor P. Popov
- 2. Strength of Materials: Andrew Pytel & Ferdinand L. Singer
- 3. Mechanics of Materials: Ferdinand P. Beer, E. Russell Johnston, Jr, John T. DeWolf and David F. Mazurek

#### 14. References

CE 211 Lecture Notes

# 20.17 Description of Course CE 212

# SECTION A: General Information

1. Course Title

# Structural Mechanics and Materials Sessional

- 2. Type of Course
- **3.** Offered to

Structural Engineering (Compulsory) Civil Engineering

**4.** Pre-requisite Course(s)

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Tension, direct shear and impact tests of mild steel specimen; slender column test; static bending test; hardness test of metals; helical spring test; determination of shear centre; study of structural models: truss, beam frame.

- **6.** Course Objectives
  - To determine different mechanical properties of mild steel specimens and metals.

None

- To analyse the performance of slender column and bending of beams.
- To determine different geometric properties of sections.
- To enable students to interpret the behaviour of structural models under load.
- 7. Knowledge required

Preliminary knowledge in mechanics

## 8. Course Outcomes

At the end of the course a student should be able to

CO	CO Statement	Corresponding	Domains and	Delivery Method(s)	Assessment
No.		PO(s)*	Taxonomy	and Activity(-ies)	Tool(s)
			level(s)**		
1	outline the fundamental tests of	PO(a)	C1	Lectures, Class	Class test
	common engineering materials used			participation	
	in construction practices.				
2	measure dimensions of specimens	PO(e)	C1, C2, P4	Lectures, Class	Class test
	and operate lab instruments	PO(i)	, ,	participation	
	required for testing				
3	determine mechanical properties of	PO(a)	C1, C2	Lectures, Class	Class test
	steel and timber specimens by	PO(i)	- , -	participation	
	applying knowledge of standards				
4	<i>compare</i> results of tests to interpret	PO(a)	C1, C2	Lectures, Class	
	the applicability for different		, ,	participation	
	purposes.				

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

## 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1			$\checkmark$																	
CO-2			$\checkmark$				$\checkmark$													
CO-3	$\checkmark$		$\checkmark$	$\checkmark$																
CO-4			$\checkmark$	$\checkmark$																

#### **10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)		
Lecture 1	Introduction to Material Testing (First five experiments)	Handout	CO1		
Lecture 2	Tension Test of Mild Steel Specimen and Class Assessment-1	Handout	CO2 CO3 CO4		
Lecture 3	Direct Shear Test of Metal Specimens and Class Assessment-2	Handout	CO2 CO3 CO4		
Lecture 4	Hardness Test of Metal Specimens and Class Assessment-3	Handout	CO2 CO3 CO4		
Lecture 5	Impact Test of Metal Specimens and Class Assessment-4	Handout	CO2 CO3 CO4		
Lecture 6	Tension & Bend Test of MS Rebar and Class Assessment-5	Handout	CO2 CO3 CO4		
Lecture 7	Introduction to Material Testing (Last five experiments)	Handout	CO1		
Lecture 8	Compression Test on Timber Specimen and Class Assessment-6	Handout	CO2 CO3 CO4		
Lecture 9	Test of Helical Spring and Class Assessment-7	Handout	CO2 CO3 CO4		
Lecture 10	Slender Column Test for Different End Conditions and Class Assessment-8	Handout	CO2 CO3 CO4		
Lecture 11	Static Bending Test of Timber Beam and Class Assessment-9	Handout	CO2 CO3 CO4		
Lecture 12	Tension Test of Steel Coupon and Class Assessment-10	Handout	CO2 CO3 CO4		

**11.** Assessment Strategy

- Class Participation: Class attendance will be recorded in every class.
- Class Lecture: Two lectures will be given for 10 experiments, covering five experiments per lecture.
- Lab Report: A comprehensive report will be submitted by the students upon completion of each experiment which will be graded.
- Class Test: 10 (Ten) class assessments will be administered each day prior to the commencement of the scheduled experiment.

**12.** Distribution of Marks

Item	Marks
Attendance	15
Lab Report	60
Class Assessment	75

13. Textbook

Theory and Practice of Testing the Strength of Materials Authors: Dr. Ishtiaque Ahmed

## 14. References

- ASTM A370-Mechanical Testing of Steel Products
- ASTM A125- Helical Spring Testing
- ASTM D143- Standard Test Methods for Small Clear Specimens of Timber

# 20.18 Description of Course CE 213

## SECTION A: General Information

1. Course Title

# CE213: Mechanics of Solids II, 3.00 Cr.Hr.

- 2. Type of Course Structural E
- 3. Offered to

Structural Engineering (Compulsory) Civil Engineering

**4.** Pre-requisite Course(s)

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Symmetric and unsymmetrical bending of beams; stresses due to axial load and bending; stress transformation, Mohr's circle of stresses; beam deflection by direct integration and moment area method; elastic buckling of columns; elastic strain energy; cable theorem and cable supported structures, thin walled pressure vessels.

- **6.** Course Objectives
  - To introduce problems associated with symmetric and unsymmetrical bending of beams.

CE 211

- To enable students to solve problems of stresses due to axial load and bending.
- To familiarize students with principles of stress transformation.
- To familiarize students with Mohr's circle of stress along with application in solving problems.
- To determine deflection of beams using direct integration and moment area methods.
- To solve problems related to elastic buckling of columns.
- To familiarize students with concepts of elastic strain energy and its application
- To solve problems related to cable supported structures and thin-walled pressure vessels.
- 7. Knowledge required

Preliminary knowledge in mechanics

#### 8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>Comprehend</i> combined stress equation and <i>apply</i> these formulae to determine normal stress in structural members and the location of the plane of zero stress resulting from axial loading and/or biaxial bending.	PO(a) PO(b)	C3	Lectures, Class participation	Class test, and /or final examination
2	<i>determine</i> the stress and their direction at a point in any orientation in a body through stress transformation methods and the orientations of principal	PO(a) PO(b)	C3	Lectures, Class participation	final examination

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
	stresses and maximum shear stresses due to applied loads.				
3	<i>Apply</i> Mohr's circle of stress to graphically <i>solve</i> stress transformation problems.	PO(a) PO(b)	C3	Lectures, Class participation	Class test, and /or final examination
4	<i>determine</i> the deflections of beams subjected to different loadings using the concepts integration and moment-area theorems.	PO(a) PO(b)	C4	Lectures, Class participation	Class test, and /or final examination
5	<i>formulate</i> the critical buckling load of columns for different end conditions and <i>use</i> them to calculate buckling loads of compression members in structures.	PO(a) PO(b)	C4	Lectures, Class participation	final examination
6	<i>state</i> and <i>formulate</i> cable theorem and <i>apply</i> this theorem to determine stresses, strain and other parameters of cables.	PO(a) PO(b)	C3	Lectures, Class participation	final examination
7	<i>determine</i> the different states of stress, strain and other parameters pressure vessels.	PO(a) PO(b)	C3	Lectures, Class participation	final examination
8	<i>apply</i> the concept of elastic strain energy to <i>determine</i> various deformation components in simple structural elements.	PO(a) PO(b)	C4	Lectures, Class participation	Class test, and /or final examination

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$	$\checkmark$	$\checkmark$																	
CO-2	$\checkmark$	$\checkmark$	$\checkmark$																	
CO-3	$\checkmark$	$\checkmark$	$\checkmark$																	
CO-4		$\checkmark$	$\checkmark$	$\checkmark$																
CO-5	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-6	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-7			$\checkmark$	$\checkmark$																
CO-8		$\checkmark$		$\checkmark$																

#### **10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction to Mechanics of Solids II. Review of different types of loading, support, internal forces, stresses (axial, bending and shear), deformation and strain.	Handout	CO1
Lecture 2-6	Combined stresses considering axial load and bending moment (uni-axial and biaxial) Solution of problems for Symmetric and un-symmetric beam bending	Handout	CO1
Lecture 7	Class test-1. Topic: Symmetric and un-symmetric bending of beams		
Lecture 8	Introduction to transformation of stress and derivation of equations for Transformation of Stresses in Two-Dimensional Problems	Handout	CO2
Lecture 9-10	Principal Stresses in Two-Dimensional Problems, Maximum Shear Stresses in Two-Dimensional Problems and Mohr's Circle of Stress for Two-Dimensional Problems	Handout	CO2, CO3
Lecture 11-12	Solution of problems covering classes 8-10		CO2, CO3
Lecture 13	Class test-2. Topic: Stress Transformation		
Lecture 14	Beam Deflection by Direct Integration: derivation of equations. Alternative forms of equations, boundary conditions.	Handout	CO4
Lecture 15-17	Calculation of deflection of beams using method of integration for various support condition, loadings and stiffness.	Handout	CO4
Lecture 18	Beam Deflections by Moment-area Method: derivation of equations. Interpretation of signs for angle change and tangential deviations	Handout	CO4
Lecture 19-21	Calculation of deflection of beams using Moment-area Method for various support condition, loadings and stiffness.	Handout	CO4
Lecture 22	Class test-3. Topic: Deflection of Beams		
Lecture 23	Buckling of Columns, Examples of Instability, Euler Load for Columns with Pinned Ends	Handout	CO5
Lecture 24-26	Euler Load for Columns with different end restraints, Limitations of the Euler Formulas, Generalized Euler Buckling Formulas	Handout	CO5
Lecture 27-30	Elastic Strain Energy for: Axial Stress (from normal load and bending moment), Shear Stress and Torsional Stress. Calculation of Energy and Deformation using energy methods.	Handout	CO8
Lecture 31	Class test-4. Topic: Elastic Strain Energy		
Lecture 32-34	Cables, Introduction to various cable type of structures, Shape of Cables, General Cable theorem, solution of problems with concentrated loadings	Handout	CO6
Lecture 35-38	Cable under uniformly distributed load: Cable Shape, Cable length, Cable Tension, Cable Stretch. Solution of problems for Statically Determinate Suspension Bridges	Handout	CO6
Lecture 39-41	Combined stresses for thin walled pressure vessels	Handout	CO7
Lecture 42	Review class		

11. Assessment Strategy

- Class Participation: Class attendance will be recorded in every class.
- Class Test: At least four class tests will be administered. Best three of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

#### 12. Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

#### 13. Textbook

- a) Engineering Mechanics of Solids: Egor P. Popov, Pearson
- b) Strength of Materials: Andrew Pytel & Ferdinand L. Singer, Harpercollins College Div.
- c) Mechanics of Materials: Russell C. Hibbeler, Pearson

#### 14. References

CE 213 Lecture Notes

# 20.19 Description of Course CE 300 SECTION A: General Information

- 1. Course TitleProfessional Training in Civil Engineering (1.00 Cr. Hr.)2. Type of CourseBasic Engineering (Compulsory)3. Offered toLevel 3/ Term II, Civil Engineering Students
- 4. Pre-requisite Course(s)

(s) Minimum Credit Requirement: 80.00 Cr. Hr

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

# Involvement as a trainee in a Civil Engineering related industry/ projects/ firms to gather knowledge on state-of-the-art practices of Civil Engineering.

- 6. Course Objectives
  - Students will be able to learn professional and ethical responsibility
  - Students will be able to observe professional skills
  - Students will be able to improve communication skills
- 7. Knowledge required

Preliminary knowledge in civil engineering structures

8. Course Outcomes

At the end of the course a student should be able to

CO	CO Statement	Corresponding	Domains	Delivery Method(s) and	Assessment Tool(s)
No.		PO(s)*	and	Activity(-ies)	
			Taxonomy		
			level(s)**		
1	Comprehend professional	PO(f),	C3	Instructions, Project	Reports,
	and ethical responsibility in			demonstration &	Evaluation/Feedback
	a real-life project setup	PO(h)		participation	
2	comprehend and study	PO(l)	C2, A3	Instructions, Project	Reports,
	professional skills from the		,	demonstration &	Evaluation/Feedback
	observations of real			participation	
	projects				
3	communicate with	PO(j)	C5, A2	Instructions, Project	Reports,
	professionals in a well			demonstration &	Evaluation/Feedback
	scientific manner			participation	

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1							$\checkmark$													
CO-2																				
CO-3																				

#### 10. Lecture Plan

Not Applicable

11. Assessment Strategy

- Participation: Participation and attendance will be recorded in every class.
- Continuous Assessment: Reports, Evaluation & Feedback

#### **12.** Distribution of Marks

Item	Marks
Participation	20%
Reports	50%
Evaluation & Feedback	30%

13. Textbook

Not applicable

14. References

Not applicable

#### 20.20 Description of Course CE 301

#### **SECTION A: General Information**

1.	Course Title	Professional Practices and Communication
2.	Type of Course	Basic Engineering Practice (Compulsory)

None

- 3. Offered to Civil Engineering
- **4.** Pre-requisite Course(s)

#### **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Project, its characteristic feature, project life cycle; type of contracts; procurement regulations and law; documents for procurement of works, goods and services and their application; contract risk and contract responsibility; insurances; tender procedure; claims, disputes and arbitration procedure; measures for reducing fiduciary risks. Introduction to communication concepts, modes of communication, methods of effective communication; writing reports; oral presentation of reports; writing proposals; preparing effective business messages; conducting meetings; strategies for effective speaking and successful inter personal communication; job application process, interviews and follow-ups; an introduction to the code of ethics for engineers.

#### 6. Course Objectives

- To introduce students to a wide range of practical aspects in the profession of civil engineering
- To introduce the basic concept of project and project risk
- To introduce the issues related with ethics for engineering profession
- To familiarize the students about the process and regulatory framework for public procurement
- To provide the students the basic working knowledge on preparing procurement documents and evaluation for procurement
- To provide the students the basic knowledge of effective written and oral communications

# 7. Knowledge required

Basic comprehension and language skills

## 8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>decide</i> on procurement method for a particular application based on the nature and value of Works/Goods and <i>prepare</i> Procurement Document under the framework of public procurement Act and Regulation.	PO(k)	C5; C3	Lectures, Class participation	Class test, final examination
2	<i>apply</i> the Procurement Process by arranging a competitive bidding.	PO(j)	C3	Lectures, Class participation	Class test, final examination
3	<i>Understand</i> the principles of effective verbal, non-verbal and written communication for engineering professionals and know how to <i>prepare</i> presentations and reports	PO(j)	C1; C2	Lectures, Class participation	Class test, final examination
4	<i>discuss</i> the concept of project and project development, the characteristics of a project, contract clauses and formats and comprehend fiduciary risk and <i>interpret</i> insurance and bonds as a risk management tool	PO(k)	C2	Lectures, Class participation	Class test, final examination
5	<i>follow</i> the basic principles underlying Code of Ethics for Engineers in professional practice	PO(f)	C4; C5	Lectures, Class participation	Class test, final examination
6	<i>explain</i> the attributes of the civil engineering profession	PO(f)	A3	Lectures, Class participation	Class test, final examination

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1				$\checkmark$																
CO-2					$\checkmark$															
CO-3					$\checkmark$															
CO-4					$\checkmark$															
CO-5																				
CO-6																				

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction to Act and Regulation in relation to Public Procurement Act (PPA) and Public Procurement Regulation (PPR)	Handout	CO1
Lecture 2	Provisions of PPA and PPR on (i)Basic terminologies used in procurement (ii)Applicability of PPA (iii) Flowchart of Tendering Process	Handout, Masters	CO1
Lecture 3	<ul><li>(i)The procurement process: role of Tender Opening and Tender Evaluation Committees;</li><li>(ii)Tender Evaluation Process</li><li>(iii) Procurement Plan and its purpose</li></ul>	Handout, Masters	CO1 CO2
Lecture 4	National Competitive Tender and International Competitive Tender Procurement Methods for Works and goods and their applicability;	Handout, Masters	CO2
Lecture 5	Details advantages and disadvantages of various methods of procurements	Handout, Masters	CO1
Lecture 6	Procurement Methods for intellectual services	Handout, Masters	CO1
Lecture 7	Claims, disputes and arbitration procedure;	Handout, Masters	CO1
Lecture 8	Importance of specification, Attributes of good specification, General and Particular Specification	Handout, Masters	CO1
Lecture 9	Specification of civil construction items; specification of goods items.	Handout, Masters	CO1
Lecture 10	Importance of BoQ; Preparation of BoQ for civil construction items and goods items.	Handout, Masters	CO1
Lecture 11- 12	Elements of Tender Document; Priority of contract documents. Discussion of GCC and PCC.	Handout, Masters	CO1
Lecture 13	Lecture 13 Review		CO1 CO2
Lecture 14	Class Tests		CO1 CO2

Class No.	Topics	References	Corresponding CO(s)
Lecture 15	Definition and aspects of Civil Engineering as a profession; Attributes of Civil Engineering Profession; Historical inheritance	Handout	CO4 CO6
Lecture 16	Project: Definition, Characteristics and Lifecycle	Handout, Masters	CO4
Lecture 17	Project Development, Professional engagement in project development, Participants in project development	Handout, Masters	CO4
Lecture 18- 19	Flow of work in project development: Predesign, Design, Bid, Construct, Occupy and Decommission	Handout, Masters	CO4
Lecture 20	Design thinking in project development, Quality control plan	Handout, Masters	CO4
Lecture 21	Contract law, Contract formation, Typical contract formats	Handout, Masters	CO4
Lecture 22	Contract clauses, Contract in project delivery system,	Handout, Masters	CO4
Lecture 23			CO4
Lecture 24- 25	Insurance: Professional liability insurance, Liability insurance coverage, Specific concerns for professional liability insurance	Handout, Masters	CO4
Lecture 26	Bonds: Types of bonds, Important aspects of bond inquiry; Fiduciary Risk	Handout, Masters	CO4
Lecture 27	Review	Handout, Masters	CO4
Lecture 28	Class Tests		CO4
Lecture 29	Introduction to Communication	Handout	CO3
Lecture 30	The Seven C's of Effective Communication	Handout, Masters	CO3
Lecture 31	Preparing Effective Business Messages	Handout, Masters	CO3
Lecture 32	Types of Messages	Handout, Masters	CO3
Lecture 33	Reports	Handout, Masters	CO3
Lecture 34	Oral presentation of Written Reports	Handout, Masters	CO3
Lecture 35	Proposals	Handout, Masters	CO3
Lecture 36	Informal Oral Communication	Handout, Masters	CO3
Lecture 37	Interpersonal Communications	Handout, Masters	CO3
Lecture 38	Business and Group Meetings	Handout, Masters	CO3
Lecture 39	Communication and Legal Issues	Handout, Masters	CO3
Lecture 40	Job Application Process, Vocabulary, Grammar, Punctuation and Style	Handout, Masters	CO3

Class No.	Topics	References	Corresponding CO(s)
Lecture 41	Code of Ethics for Engineers	Handout, Masters	CO5
Lecture 42	Class Tests		

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least four class tests will be administered. Best three of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

**12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

13. Textbook

1. Public Procurement Act, Bangladesh National Assembly, Dhaka, 2006

2. Public Procurement Regulation, Central Procurement Technical Unit (CPTU), IMED, Ministry of Planning, Dhaka, 2008.

- 3. PWD Schedule of Rates 2014 for Civil Works (or updated version), Public Works Department, Dhaka.
- 4. Civil Engineer's Handbook of Professional Practice by Karen Lee Hansen & Kent E. Zenobia
- 5. Effective Business Communication, 7th Ed., Herta A. Murphy, Herbert W. Hilderbrandt, Jane P. Thomas
- 6. Engineering Ethics, 3rd Ed., Charles A. Fleddernamm

# 14. References

- Standard Procurement Documents prepared by Central Procurement Technical Unit (CPTU) is the administering authority for PPA 2006 and PPR 2008. Website: http://www.cptu.gov.bd/
- 2. Professional Communication in Engineering, H. E. Sales
- 3. Engineering your Future, 2nd Ed., Stuart B. Walch

# 20.21 Description of Course CE 302

# SECTION A: General Information

- 1. Course Title Professional Practices and Communication Sessional
- **2.** Type of Course
  - Basic Engineering (Compulsory)

None

- **3.** Offered to
- Civil Engineering
- **4.** Pre-requisite Course(s)

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Application of communication theory and professional practice approaches in a controlled class room environment; this may include case study analysis, role playing, preparing small reports and proposals, class room presentations and individual reports etc.

#### 6. Course Objectives

- To teach students preparation of write-ups, posters, project proposals, tender documents, meeting minutes, cv to enhance professional and communication skills
- To provide training on developing oral and written communication skills
- To teach students to develop teamwork.

#### 7. Knowledge required

Preliminary knowledge in Civil Engineering

#### 8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>develop</i> oral and written communication skills by presentation of various assigned tasks and interaction of audiences	PO(j)	C6	Lectures, Class participation	Presentation
2	<i>prepare</i> write-ups, posters, project proposals, tender documents, meeting minutes, cv to enhance professional and communication skills	PO(i), PO(j)	C6	Lectures, Class participation	Presentation, Reports
3	<i>identify</i> and solve community problems as a part of assigned projects	PO(i)	C4, C3, P1	Lectures, Class participation	Report
4	<i>develop</i> teamwork and leadership skills by guiding designated teams in fulfilling the to-dos of a project	PO(i)	C6	Lectures, Class participation	Presentation, Reports
5	<i>arrange</i> meetings, mock interviews, surveys and interaction sessions based on different assigned tasks	PO(i)	C6	Lectures, Class participation	Meeting

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	<b>K</b> 7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1						$\checkmark$														
CO-2																				
CO-3																				
CO-4																				
CO-5																				

#### **10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction /Lecture on Oral Presentation	Handout	CO1
Lecture 2	Individual presentation & submission of a small write- up	Handout	CO1
Lecture 3	Introduction to assigned project and lecture on contents and techniques of writing an effective project proposal along with performing SWOT analysis.	Handout	CO1 CO2
Lecture 4	Lecture on poster presentation and introduction to sample posters.	Handout	CO2
Lecture 5	Poster Presentation and evaluation		CO2
Lecture 6	Presentation on proposal for the assigned project.		CO3 CO4 CO5
Lecture 7	Lecture on conducting effective meetings	Handout	CO6
Lecture 8	Conducting meeting and evaluation.		CO6
Lecture 9	Lecture on contents of a tender document & elements of a Bill Of Quantity (BOQ)	Handout	CO2
Lecture 10	Presentation on tender as procuring entity & submission of BOQ.	Handout	CO2 CO4
Lecture 11	Tender bidding process /Presentation on tender as the tenderer		CO2 CO4
Lecture 12	Lecture on the contents and techniques of writing an effective CV and stages of an interview.	Handout	CO5
Lecture 13	Submission of CV and attending a mock-interview.		CO5
Lecture 14	Combined presentation of the selected project proposals from individual sections and selection of top three proposals.		

#### 11. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Presentation: A brief ppt and poster presentation will be held on relevant topics
- Meeting: A meeting will be held on relevant topics
- Interview: A mock interview will be held

# **12.** Distribution of Marks

Item	Marks
Attendance	10%
Presentation	15%
Report	10%
CV	15%
Tender Document	10%
Meeting	10%
Poster	10%
Tender	20%

#### 13. Textbook

1. Public Procurement Act, Bangladesh National Assembly, Dhaka, 2006

2. Public Procurement Regulation, Central Procurement Technical Unit (CPTU), IMED, Ministry of Planning, Dhaka, 2008.

3. PWD Schedule of Rates 2014 for Civil Works (or updated version), Public Works Department, Dhaka.

14. References

- 1. Tender Document (National) For Procurement of Works (Open Tendering / Limited Tendering Method) Central Procurement Technical Unit Implementation Monitoring and Evaluation Division, Ministry of Planning.
- 2. Public Works Department Rate Schedule, 2018.

# 20.22 Description of Course CE 311

#### SECTION A: General Information

- 1. Course TitleStructural Analysis and Design II2. Type of CourseStructural Engineering (Compulsory)3. Offered toCivil Engineering
- **4.** Pre-requisite Course(s) CE 213

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Stability and determinacy of structures; Analysis of statically determinate frames, trusses and arches; Influence lines; Moving loads on beams, frames and trusses; Wind and earthquake loads, code provisions. Approximate analysis of statically indeterminate structures: Mill bents, braced trusses; Portal method, cantilever method and vertical load analysis of multi storied building frames; building drift. Deflection of beams, trusses and frames by virtual work method; approximate analysis of suspension bridges.

- 6. Course Objectives
  - To familiarize students with determinacy and stability of structures.
  - To perform analysis of statically determinate frames, truss, arches.
  - To enable students to draw influence lines for moving loads on beams.
  - To introduce the concepts for approximate analysis of statically indeterminate strictures.
  - To enable students to determine deflection of beams, trusses and frames by virtual work method.
- 7. Knowledge required

Preliminary knowledge in mechanics

8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>evaluate</i> determinacy of structures including truss, frames, and arches	PO(a)	C5	Lectures, Class participation	Class test, final examination
2	<i>analyze</i> statically determinate truss, frames, suspension bridge, and arches	PO(a)	C4	Lectures, Class participation	Class test, final examination

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
3	<i>apply</i> various methods to analyze indeterminate structures including braced trusses and multi-storied building frames	PO(a) PO(b)	C3	Lectures, Class participation	Class test, final examination
4	<i>develop</i> influence lines for various structures including truss, beams, and frames and determine response of structures under moving load.	PO(a) PO(b)	C6	Lectures, Class participation	Class test, final examination
5	<i>calculate</i> deflections of beams, trusses, and frames by using virtual work method	PO(a)	C4	Lectures, Class participation	Class test, final examination
6	<i>estimate</i> wind and earthquake load for buildings and bridges as per BNBC guidelines	PO(a) PO(b)	C5	Lectures, Class participation	Class test, final examination

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6:

Adaptation; P7: Organization

^{9.} Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1			$\checkmark$	$\checkmark$																
CO-2				$\checkmark$																
CO-3			$\checkmark$	$\checkmark$																
CO-4				$\checkmark$																
CO-5		$\checkmark$	$\checkmark$	$\checkmark$																
CO-6				$\checkmark$																

Class No.	Topics	References	Corresponding CO(s)
1	Introduction to various structural systems and loads	Text Book	
2-4	Analysis of Statically determinate Frames	Text Book	CO1 CO2
5-6	Analysis of Statically determinate Trusses	Text Book	CO1 CO2
7	Analysis of Statically determinate Arches Class Test 1	Text Book	CO1 CO2
8	Approximate Analysis of Mill bent Structure	Text Book	CO3

Class No.	Topics	References	Corresponding CO(s)	
9-10	Text Book	CO3		
11	Approximate analysis of Indeterminate frames for Vertical Loads	Text Book	CO3	
12-14	Approximate analysis of Indeterminate frames for Lateral Loads	Text Book	CO3	
	Class Test 2	Handout		
15-18	Development of influence lines for statically determinate beams and application of influence line subjected to moving load.	Books/ Handout	CO4	
19	Development of influence lines for floor girders.	Books/ Handout	CO4	
20	Development of influence lines for truss structures.	Books/ Handout	CO4	
21	Class Test 1			
22-24	Determination of maximum reactions, shears, and moments of beams under series of wheel loads.	Books/ Handout	CO4	
25	Determination of absolute maximum moment of beams under series of wheel loads.	Books/ Handout	CO4	
26-27	Determination of maximum member forces of a truss structure under series of wheel loads.	Books/ Handout	CO4	
28	Determination of maximum panel reactions, shears, and moments of a floor girder under series of wheel loads.	Books/ Handout	CO4	

- Class Participation: Class attendance will be recorded in every class.
- Class Test: At least four class tests will be administered. Best three of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

#### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

# 13. Textbook

Elementary Structural Analysis, Norris Charles Head, Structural Analysis by R. C. Hibbeler, 8th eds.

#### 14. References

Bangladesh National Building Code, 2006 eds.

# 20.23 Description of Course CE 315

# **SECTION A: General Information**

- 1. Course Title
   Design of Concrete Structures I
- 2. Type of Course Structural Engineering (Compulsory)
- **3.** Offered to Civil Engineering
- 4. Pre-requisite Course(s) None

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Fundamental behaviour of reinforced concrete and loads on structure; introduction to strength design and alternate design methods; flexural design of beams (singly reinforced, doubly reinforced, T-beam) using strength design method; shear, diagonal tension and torsion of beams; bond and anchorage of reinforcement and its detailing; design of one- way slabs; design of two-way edge supported slabs.

# 6. Course Objectives

- To acquaint students with the behaviour of reinforced concrete structures under load.
- To introduce to students with the design methodologies adopted for design of elements in building.
- To enable students to design members of a building under flexure using strength design method with detailing.
- 7. Knowledge required

Preliminary knowledge in mechanics

8. Course Outcomes

#### At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	Appraise the concept of USD and alternate (WSD) design methods for flexure and mechanics involved during different stages of a loaded beam ie. uncracked, cracked, failure.	PO(a)	C5	Lectures, Class participation	Class test, final examination
2	Design different (singly reinforced, doubly reinforced and T-beam) reinforced concrete beams for flexure.	PO(a) PO(b) PO(c)	C6	Lectures, Class participation	Class test, final examination
3	Conceive the shear and torsion behavior and design reinforced concrete beams for shear and torsion.	PO(a) PO(b) PO(c)	C5, C6	Lectures, Class participation	Class test, final examination

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
4	Develop all types of reinforcement detail drawings of reinforced concrete beams that account for development length, anchorage, and splicing of reinforcing bars.	PO(a) PO(b) PO(c)	C6	Lectures, Class participation	
5	Design and develop drawings for one-way and two-way edge supported slabs.	PO(a) PO(b) PO(c)	C6	Lectures, Class participation	

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-2	$\checkmark$			$\checkmark$	$\checkmark$															
CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
CO-4	$\checkmark$			$\checkmark$	$\checkmark$															
CO-5	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$															

Class No.	Topics	References	Corresponding CO(s)
1	Introduction to Reinforced Concrete, Different Structural forms, Evolution of Reinforced Concrete	Handout	CO1
2	Loads: Dead, Live and their estimation	Handout	CO1
3	Loads: wind, earthquake loads and their estimation	Handout	CO1
4	Strength design and safety: Capacity-Demand concept, Variability and safety, Safety provisions of ACI and BNBC	Handout	CO1
5	Fundamental assumptions, Mechanics of axially loaded RC members under different loading stages	Handout	CO1
6	Fundamental assumptions, Mechanics of axially loaded RC members under different loading stages		CO1
7	Behaviour of homogeneous beams, Behaviour of RC beams under increasing loads,	Handout	CO1
8	Calculation of stresses at different loading stages- uncracked and cracked elastic	Handout	CO1
9	Calculation of stresses at different loading stages- failure (strength), Balanced condition,	Handout	CO1
10	Design of singly reinforced rectangular beams,	Handout	CO2
11	provisions for under-reinforced beams, phi factors, minimum and maximum reinforcement ratio, Design aids		CO2

Class No.	Topics	References	Corresponding CO(s)
12	Singly reinforced beam	Handout	CO2
13	Singly reinforced beam	Handout	CO2
14	Singly reinforced beam	Handout	CO2
15	Singly reinforced beam	Handout	CO2
16	Singly reinforced beam	Handout	CO2
17	Singly reinforced beam	Handout	CO2
18	Doubly reinforced Beam	Handout	CO2
19	Doubly reinforced Beam	Handout	CO2
20	Doubly reinforced Beam	Handout	CO2
21	Doubly reinforced Beam	Handout	CO2
22	T- Beams	Handout	CO2
23	T- Beams	Handout	CO2
24	T- Beams	Handout	CO2
25	Shear, diagonal tension and torsion of beams	Handout	CO3
26	Shear, diagonal tension and torsion of beams	Handout	CO3
27	Shear, diagonal tension and torsion of beams	Handout	CO3
28	Shear, diagonal tension and torsion of beams	Handout	CO3
29	Shear, diagonal tension and torsion of beams	Handout	CO3
30	Shear, diagonal tension and torsion of beams	Handout	CO3
31	Bond and anchorage	Handout	CO4
32	Bond and anchorage	Handout	CO4
33	Bond and anchorage	Handout	CO4
34	Bond and anchorage	Handout	CO4
35	Bond and anchorage	Handout	CO4
36	One-way slabs	Handout	CO5
37	One-way slabs	Handout	CO5
38	One-way slabs	Handout	CO5
39	Two-way slabs	Handout	CO5
40	Two-way slabs	Handout	CO5

Class No.	Topics	References	Corresponding CO(s)
41	Two-way slabs	Handout	CO5
42	Review		

- Class Participation: Class attendance will be recorded in every class.
- Class Test: At least three class tests will be administered. Best two of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

#### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

13. Textbook

1. Design of Concrete Structures: Darwin, Dolan and Nilson, 15th Ed

#### 14. References

- 1. Structural Concrete- Theory and Design: Hassoun, Al-Manaseer 7th Ed
- 2. Reinforced Concrete- Mechanics & Design: Wight & McGregor 6th Ed
- 3. Bangladesh National Building Code, 1994/2006 and 2020
- 4. ACI 318-08: Building Code Requirements for Structural Concrete and Commentary

# 20.24 Description of Course CE 316

#### **SECTION A: General Information**

1.	Course Title	Bridge Design Sessional
2.	Type of Course	Structural Engineering (Compulsory)

- **3.** Offered to Civil Engineering
- 4. Pre-requisite Course(s) None

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

# Design and detailing of a slab bridge; design and detailing of a balanced cantilever bridge; design and detailing of a PC Girder Bridge.

#### 6. Course Objectives

- To teach students the design methodology adopted for different types of bridge design.
- To prepare the students to identify the problems faced in bridge design.
- To provide hands on training in preparing detailed drawings required for bridge design.
- 7. Knowledge required

Theoretical background in behaviour of reinforced concrete.

8. Course Outcomes

At the end of the course a student sh	hould be able to
---------------------------------------	------------------

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>Identify</i> the structural elements of a slab bridge, balanced cantilever bridge and PC girder bridge.	PO(a) PO(b) PO(d)	C1	Lectures, Homework	
2	<i>Analyse</i> various structural components of slab bridge, balanced cantilever bridge and PC girder bridge.	PO(a) PO(b) PO(d)	C4	Lectures, Homework	
3	<i>Design</i> various structural components of slab bridge, balanced cantilever bridge and PC girder bridge.	PO(a) PO(b) PO(c)	C6	Lectures, Homework	
4	<i>Generate</i> the detailing of various structural components of slab bridge, balanced cantilever bridge and PC girder bridge.	PO(a) PO(b) PO(c)	C6	Lectures, Homework	

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

#### 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1			$\checkmark$	$\checkmark$				$\checkmark$	$\checkmark$									$\checkmark$		
CO-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$	$\checkmark$		$\checkmark$						$\checkmark$	$\checkmark$		
CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$						$\checkmark$	$\checkmark$				$\checkmark$
CO-4	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$				$\checkmark$									$\checkmark$		

**10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1-5	Introduction RC Cantilever Bridge	Handout	CO1
			CO2
			CO3
			CO4
Lecture 6	RC Slab Bridge	Handout	CO1
			CO2
			CO3
			CO4
Lecture 7	Mid Quiz and Viva		
Lecture 8-12	PC Girder Bridge	Handout	CO1
	8-		CO2
			CO3
			CO4
Lecture 13	Final Quiz and Viva		

11. Assessment Strategy

Class Participation: Class attendance will be recorded in every class. •

Class Test: At least five eight class assessments will be administered. Best out of them will be counted • towards grading.

- Quiz: A comprehensive mid and final quiz will be held at the middle and end of the Term.
- Viva: A comprehensive mid and final viva will be held at the middle and end of the Term.

12. Distribution of Marks

Item	Marks
Attendance	10%
Lab Report	20%
Class Assessment	20%
Mid Quiz	20%
Final Quiz	20%
Mid Viva	5%
Final Viva	5%

#### 13. Textbook

Design of Modern Highway Bridges by Narendra Tally

14. References

1. Lecture Notes on CE 316

# 20.25 Description of Course CE 317

#### **SECTION A: General Information**

1. Course Title	<b>Design of Concrete Structures II</b>
2. Type of Course	Structural Engineering (Compulsory)
3. Offered to	Civil Engineering
4. Pre-requisite Course(s)	CE 315

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Design of column supported slabs; introduction to floor systems; design of columns under uniaxial and biaxial loading, introduction to slender column; structural design of footings, pile caps; seismic detailing; shear wall; structural forms; introduction to prestressed concrete; analysis and preliminary design of prestressed beam sections.

#### 6. Course Objectives

- To acquaint students with the different types of floor systems.
- To introduce to students with the design methodologies adopted for design of elements in building.
- To enable students to design compressive members under different types of loading.
- To introduce to students the analysis and design methodologies for prestressed concrete.

#### 7. Knowledge required

Preliminary knowledge in mechanics

#### 8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>design</i> of reinforced concrete columns under uniaxial and biaxial loading	PO(a) PO(c)	C6	Lectures, Class participation	

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
2	<i>analyze</i> the stresses and moments developed in slabs and columns	PO(a) PO(b)	C4	Lectures, Class participation	
3	<i>construct</i> structural designs of single footings, combined footings, raft foundations and pile caps	PO(a) PO(b) PO(c)	C6	Lectures, Class participation	
4	<i>prepare</i> seismic detailing for beams and columns	PO(a) PO(j)	C6	Lectures, Class participation	
5	<i>evaluate</i> and construct a shear wall	PO(a) PO(b) PO(c)	C5, C6	Lectures, Class participation	
6	<i>describe</i> the basic concepts of prestressed concrete: pretensioning, posttensioning, loss of prestress, high strength materials	PO(a)	C2	Lectures, Class participation	
7	<i>investigate</i> and draft a preliminary prestressed beam section using the three fundamental concepts of prestressing	PO(a) PO(b) PO(c)	C4, C6	Lectures, Class participation	

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

#### 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
CO-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
CO-4		$\checkmark$	$\checkmark$	$\checkmark$																
CO-5	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
CO-6	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-7	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															

Class No.	Topics	References	Corresponding CO(s)
1	Introduction		
2	Materials	Handout	CO6
3	Materials	Handout	C06

Class No.	Topics	References	Corresponding CO(s)			
4	Pre-stress system	Handout	CO6			
5	Loss of Pre-stress	Handout	CO6			
6	Loss of Pre-stress	Handout	CO6			
7	Loss of Pre-stress	Handout	CO6			
8	Analysis of section for flexure	Handout	CO6			
9	Analysis of section for flexure	Handout	CO6			
10	Analysis of section for flexure and class test -1	Handout	CO6			
11	Analysis of section for flexure	Handout	CO6			
12	Analysis of section for flexure	Handout	CO6			
13	Preliminary design and class test -2	Handout	CO7			
14	Preliminary design	Handout	CO7			
15	Axially loaded column	Handout	CO1			
16	Axially loaded column	Handout	CO1			
17	Axially loaded column- problems, tied column	Handout	CO1			
18	Axially loaded column- problems, spiral column and ct-1	Handout				
19	Compression and uniaxial bending	Handout	CO1 CO2			
20	Compression and uniaxial bending-problem	Handout	CO1 CO2			
21	Compression and uniaxial bending-problem	Handout	CO1 CO2			
22	Compression and uniaxial bending-charts and ct-2	Handout				
23	Compression and biaxial bending – loaded column	Handout	CO1 CO2			
24	Compression and biaxial bending –reciprocal column	Handout	CO1 CO2			
25	Slender column and shear wall	Handout	CO5			
26	Shear wall problem	Handout	CO5			
27	Seismic detailing	Handout	CO4			
28	Seismic detailing	Handout	CO4			
29	Floor and roof slab system-introduction	Textbook	CO2			
30	DDM method	Textbook	CO2			
31	DDM method - Design	Textbook	CO2			

Class No.	Topics	References	Corresponding CO(s)
32	DDM method - Design and Shear design in flat plates and flat slabs	Textbook	CO2
33	Shear design in flat plates and flat slabs	Textbook	CO2
34	Shear design in flat plates and flat slabs	Textbook	CO2
35	Footings and foundations –introduction and ct- 1	Textbook	
36	Footing-square	Textbook	CO3
37	Footing – rectangular	Textbook	CO3
38	Combined footing-grid/strip	Textbook	CO3
39	Combined footing-two column footing	Textbook	CO3
40	Combined footing- raft/mat	Textbook	CO3
41	Pile cap	Textbook	CO3
42	Pile cap	Textbook	CO3

- Class Participation: Class attendance will be recorded in every class.
- Class Test: At least three class tests will be administered. Best two of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

12.Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

13.Textbook

- 1. Design of concrete structures –David Darwin, Charles W. Dolan and Arthur H. Nilson 15th Edition
- 2. Design of prestressed concrete structures T.Y. Lin

#### 14. References

- 1. Structural concrete theory and design Hassoun, Al-Manaseer, 7th Edition
- 2. Reinforced concrete mechanics and design Wight and McGregor, 6th Edition

# 20.26 Description of Course CE 319

- **SECTION A: General Information**
- 1. Course Title CE319: Design of Steel Structures, 3.00 Cr.hr.
- 2. Type of Course Structural Engineering (Compulsory)

None

- **3.** Offered to Civil Engineering
- **4.** Pre-requisite Course(s)

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Behavioral principles and design of structural steel; design of tension members, bolted and welded connections; compression members; residual stress, local buckling, effective length; flexural members; lateral torsional buckling; design of beam-columns; connection design, moment connections, column bases; detailing of steel structures.

#### 6. Course Objectives

- To acquaint students with behavior and design of steel structure.
- To introduce to students with the design methodologies adopted for design of members and connections in building.
- To enable students to determine different types of failure modes of the structure and members.
- To introduce to students the analysis of base connections.
- 7. Knowledge required: Preliminary knowledge in mechanics.

#### 8. Course Outcomes: At the end of the course a student should be able to

CO No.	CO Statement	PO(s)*		Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
			Taxonomy level(s)**		
1	Learn and understand the special	PO(a), PO(b),	C2	Lectures, Class	Final Examination
	and unique features of structural	PO(c)		participation	
	steel design including AISC LRFD				
	and ASD principles, limit states				
	and design loading conditions.				

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
2	<i>Learn</i> various limit states of tension members, <i>design</i> and proportion tension members	PO(a), PO(b), PO(c)	C4	Lectures, Class participation	Class test, Final Examination
3	<i>Analyze</i> the effect of residual stresses in the behavior of tension members	PO(a), PO(b), PO(c)	C2	Lectures, Class participation	Final Examination
4	<i>Learn</i> various limit states of simple bolted connections, <i>design</i> and proportion simple bolted connections subject to axial forces.	PO(a), PO(b), PO(c)	C4	Lectures, Class participation	Final Examination
5	<i>Learn</i> various limit states of welded connections, <i>design</i> and proportion simple welded connections subject to axial forces.	PO(a), PO(b), PO(c)	C4	Lectures, Class participation	Class test, Final Examination
6	<i>Learn</i> and <i>understand</i> the buckling behavior and limit states of compression members, <i>design</i> and proportion compression members	PO(a), PO(b), PO(c)	C4	Lectures, Class participation	Class test, Final Examination
7	<i>Understand</i> lateral torsional buckling and other limit states of beams, <i>design</i> and proportion flexural members.	PO(a), PO(b), PO(c)	C4	Lectures, Class participation	Class test, Final Examination
8	<i>Understand</i> the behavior of beam columns, <i>design</i> and proportion beam-columns.	PO(a), PO(b), PO(c)	C4	Lectures, Class participation	Final Examination
9	<i>Understand</i> the limit states and behavior of simple and moment connections, <i>design</i> and detail simple connections and moment connections.	PO(a), PO(b), PO(c)	C4	Lectures, Class participation	Final Examination
10	<i>Understand</i> the limit states and behavior of columns bases, <i>design</i> and detail column bases subject to axial compression.	PO(a), PO(b), PO(c)	C4	Lectures, Class participation	Final Examination

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation;

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1			$\checkmark$	$\checkmark$	$\checkmark$															
CO-2			$\checkmark$	$\checkmark$	$\checkmark$															
CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
CO-4			$\checkmark$	$\checkmark$	$\checkmark$															
CO-5			$\checkmark$	$\checkmark$	$\checkmark$															
CO-6	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
CO-7	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
CO-8	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
CO-9	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
CO-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
10																				

Lectures	Topics	References	<b>Corresponding CO(s)</b>
1, 2, 3	Introduction	Text Book, Handout	CO1
4, 5, 6, 7	Tension members	Text Book, Handout	CO1, CO2, CO3
8	CT-1	Text Book, Handout	CO1, CO2
9, 10, 11, 12	Bolted Connections	Text Book, Handout	CO1, CO4
13, 14, 15, 16	Welded connections	Text Book, Handout	CO1, CO5
17	CT-2	Text Book, Handout	CO1, CO4
18, 19, 20, 21	Compression members	Text Book, Handout	CO1, CO6
22	CT-3	Text Book, Handout	CO1, CO6
23, 24, 25, 26, 27, 28	Flexural members	Text Book, Handout	CO1, CO7
29	CT-4	Text Book, Handout	CO1, CO7
30, 31, 32	Beam Columns	Text Book, Handout	CO1, CO8
33, 34, 35, 36, 37, 38	Connections	Text Book, Handout	CO1, CO9, CO10
39, 40, 41, 42	Reserved for make-up		
	classes due to holidays and		
	other disruptions.		

- Class Participation: Class attendance will be recorded in every class.
- Class Test: At least four class tests will be administered. Best three of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

12.Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

13.Textbook: Steel Structures: Design and Behavior, 5th Ed. Authors: Salmon, Johnson and Malhas

14. References: AISC Steel Construction Manual, 14th Ed.

# 20.27 Description of Course CE 320

#### **SECTION A: General Information**

1.	Course Title	<b>Steel Structures Design Sessional</b>
2.	Type of Course	Structural Engineering (Compulsory)
3.	Offered to	Civil Engineering
4.	Pre-requisite Course(s)	CE 319

# **SECTION B: Course Details**

- Course Content (As approved by the Academic Council) Analysis and design of low rise moment frame building for gravity and wind loads; Design of members, connections and columns bases.
- 6. Course Objectives
  - To teach students design methodology of various components of a steel moment frame building.

- To prepare the students on how to design steel moment frame buildings considering gravity and wind loads as per code provisions.
- To provide hands on training on relevant tools for modelling and analysis of steel moment frame building under various loads.

## 7. Knowledge required

Theoretical background in behaviour and design of steel members when subjected to loads.

# 8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>Identify</i> the key parameters/ factors for analysis and design of a Low- Rise Steel Building	PO(a)	C1	Lectures, Homework	Assignment
2	<i>Define</i> the applicable load cases and load combinations for the steel Buildings as per code	PO(a)	C1	Lectures, Homework	Quiz, Assignment
3	Analyse Low-Rise Steel Building through computer software	PO(b) PO(e)	C4	Lectures, Homework	Assignment
4	Design various components of the Low-Rise Steel Building	PO(c)	C5	Lectures, Homework	Quiz, Assignment

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing P-Psychometer: P1: Percention: P2: Set: P3: Guided Response: P4: Mechanism: P5: Complex Overt Response: P6: Complex Overt P6: Complex

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1			$\checkmark$	$\checkmark$																
CO-2			$\checkmark$	$\checkmark$																
CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$														
CO-4					$\checkmark$															

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introductory class on steel structures design	Handout	
Lecture 2	<ul><li>(i) Applicable gravity and wind load calculations as per BNBC.</li><li>(ii) Purlin and bracing design.</li></ul>	Handout	CO1 CO2
Lecture 3	Hands on training on software for analysis of Low rise steel frame.	Handout	CO1 CO2 CO3
Lecture 4	Hands on training on software for analysis of Low rise steel frame.	Handout	CO1 CO2 CO3

Class No.	Topics	References	Corresponding CO(s)
Lecture 5	Hands on training on software for analysis of		CO1
	Low rise steel frame.		CO2 CO3
Lecture 6	(i) Problem Identification	Handout	CO1
	(ii) Conceptual Design		CO2
	(iii) Model Development		CO3
	(iv) Load calculation and application		
Lecture 7	Mid-Term Quiz + Viva		
Lecture 8	(i) Analysis of frame	Handout	CO3
	(ii) Force calculation for design of different components.		CO4
Lecture 9	Beam and Column Design	Handout	CO2
	6		CO3
			CO4
Lecture 10	Connection Design	Handout	CO2
			CO3
			CO4
Lecture 11	Anchor and Bracing Design	Handout	CO2
			CO3
			CO4
Lecture 12	Final Quiz +Viva		

- Class Participation: Class attendance will be recorded in every class.
- Class Test: At least five eight class assessments will be administered. Best out of them will be counted towards grading.
- Quiz: A comprehensive mid and final quiz will be held at the middle and end of the Term.
- Viva: A comprehensive mid and final viva will be held at the middle and end of the Term.

# **12.** Distribution of Marks

Item	Marks
Attendance	10%
Lab Report	20%
Class Assessment	20%
Viva (2)	20%
Quiz (2)	30%

13. Textbook

1. Design of Steel Structures – Edwin H. Gaylord, Jr. Charles N. Gaylord, James E. Stallmeyer, Mcgraw-Hill International Editions

- 2. Structural Steel Design Lambert Tall, John Wiley & Sons.
- 3. Steel Structures Charles G. Salmon & Joh E. Johnson, Index Educational Publishers.

#### 14. References

- 1. Lecture Notes on CE 320.
- 2. AISC Steel Construction Manual, 14th Ed.
- 3. BNBC 2020.

# 20.28 Description of Course CE 331

# **SECTION A: General Information**

- 1. Course Title
- 2. Type of Course
- 3. Offered to
- **Environmental Engineering I**

Environmental Engineering (Compulsory) **Civil Engineering** 

None

**4.** Pre-requisite Course(s)

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Introduction to Environmental Engineering: ecology and environment; climate change; biodiversity; energy and environment.

Water Supply Engineering: introduction; water supply scenario in Bangladesh and SDG targets; water demands; water supply sources; ground water exploration: aquifer properties and ground water flow, well hydraulics, water well design, drilling, construction and maintenance; water demand for rural communities; shallow hand tubewells, deep tubewells, deep set pumps, rainwater harvesting, and alternative water supplies for problem areas.

Surface water collection and transportation; head works; pumps and pumping machineries; water distribution systems; analysis and design of distribution network; fire hydrants; water meters; leak detection; unaccounted for water.

Water quality requirements; water treatment: plain sedimentation, coagulation, flocculation, filtration, disinfection; miscellaneous treatment methods; low cost treatment methods for rural communities; water safety plans.

6. Course Objectives

The objective of the course is to introduce the basic concepts of environmental engineering to the students. Students will learn about the interaction of man-made and natural environment and how external drivers (climate change) affect this interaction. The course will discuss basic concepts of water supply engineering, water quality, water treatment requirements and processes in the context of developing countries. The water quality challenges of Bangladesh and existing low-cost technologies to extract and treat water will also be covered.

7. Knowledge required

Preliminary knowledge in environmental engineering

**8.** Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>depict</i> the inter-relationship among various environmental compartments (ecology, biodiversity) and environmental forcers (climate change, GHG) under the context of Bangladesh	PO(a) PO(g)	C2	Lectures, Class participation	Class test, final examination
2	<i>explain</i> various components and aspects of traditional water supply systems from source to consumer with a particular focus on low- income and urban communities	PO(a) PO(b)	C2	Lectures, Class participation	Class test, final examination
3	<i>estimate</i> various parameters pertinent to the design of traditional water supply systems with a special emphasis on groundwater-based systems	PO(a) PO(b) PO(c)	C2	Lectures, Class participation	Class test, final examination

CO	CO Statement	Corresponding	Domains and	Delivery Method(s)	Assessment
No.		PO(s)*	Taxonomy	and Activity(-ies)	Tool(s)
			level(s)**		
4	<i>compute</i> flows in piped water	PO(b)	C3	Lectures, Class	Class test,
	distribution systems using iterative	PO(e)		participation	final
	methods				examination
5	comprehend basic principles of	PO(a)	C2	Lectures, Class	Class test,
	different engineered systems of	PO(b)		participation	final
	water purification as well as the				examination
	significance of different drinking				
	water quality parameters				

 **C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing
 P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

# 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$						$\checkmark$									$\checkmark$				
CO-2				$\checkmark$	$\checkmark$	$\checkmark$										$\checkmark$				
CO-3				$\checkmark$	$\checkmark$	$\checkmark$										$\checkmark$				
CO-4		$\checkmark$			$\checkmark$											$\checkmark$				
CO-5	$\checkmark$				$\checkmark$	$\checkmark$										$\checkmark$				

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction to Environmental (Background of Civil, Sanitary, Public Health and Environmental) Engineering	Handout	CO1
Lecture 2	Ecology and Environment, Biodiversity (genetic diversity, species diversity and ecosystem diversity), Benefits of biodiversity, Loss of biodiversity in Bangladesh.	Handout	CO1
Lecture 3	Climate Change: Greenhouse gases and its effect, Causes of climate change, Climate Change in the context of Bangladesh, General impacts of climate change in Bangladesh	Handout	CO1
Lecture 4	Introduction to water supply and sanitation, Elements of public water supply, Planning a municipal water supply system,	Handout	CO2
Lecture 5	Water Demand: Water Consumption categories, Factors affecting water consumption, Water demand for rural communities	Handout	CO2
Lecture 6	Estimating future water demand, population prediction to estimate water requirements	Handout	CO3
Lecture 7	Class Test-1, Hydrologic cycle and water availability, Ground and surface Water sources	Handout	CO2
Lecture 8	Suitability of water sources with regards to quantity and quality, Choice of a source for water supply	Handout	CO2 CO3
Lecture 9-10	Groundwater exploration: Confined and unconfined aquifer properties, Groundwater flow, Well hydraulics, Interference between multiple extraction wells	Handout	CO3
Lecture 11	Water well design, well drilling, construction and maintenance of wells	Handout	CO3
Lecture 12	Alternative water supplies for problem areas in Bangladesh: shallow hand tubewells, Deep-set intermediate technologies, Deep tube-wells, Infiltration gallery, Pond sand filters, Rainwater harvesting	Handout	CO2
Lecture 13	Non-revenue water: Unbilled authorized consumption, Apparent losses and Engineering losses, Leak detection methods.	Handout	CO3
Lecture 14	Review		
Lecture 15	Introduction. Objectives, history, Essential elements of water supply system	Handout	CO2
Lecture 16	Surface water collection and transportation - intake systems	Handout	CO2
Lecture 17	Transportation of water, pressure pipes, corrosion of metal pipes, scale formation	Handout	CO2 CO3

Class No.	Topics	References	Corresponding CO(s)	
Lecture 18	Forces action on pipes, strength of pipes, pipe joints, pipe laying	Handout	CO2 CO3	
Lecture 19	Class test-2, pumps and pumping machinery	Handout	CO3	
Lecture 20	Pump design	Handout	CO3	
Lecture 21	Hydraulics of flow	Handout	CO4	
Lecture 22	Water distribution system, classification, pressure requirements in water distribution system	Handout	CO3 CO4	
Lecture 23	Economic dimension of a cylindrical overhead reservoir - problem solution	Handout	CO3	
Lecture 24	Layout of water distribution system	Handout	CO3	
Lecture 25	Design of water distribution system	Handout	CO3 CO4	
Lecture 26	Class test-3, water safety plan	Handout	CO5	
Lecture 27	Water safety plan	Handout	CO5	
Lecture 28	Overall review			
Lecture 29	History of water treatment, Significance of water quality parameters: Suspended solids, turbidity, color, odor and taste, TDS, alkalinity	Handout	C05	
Lecture 30	Significance of water quality parameters: Alkalinity, hardness, fluoride, Sulphate, metals, organics, nutrients (C, N, P)	Handout	CO5	
Lecture 31	Significance of water quality parameters: indicator organisms - Total and Fecal coliform, water quality standards, comparison of water quality and treatment processes of different sources of water	Handout	CO5	
Lecture 32	Class test-4, Engineered systems of water purification: Gas transfer (aeration), basic principles, factors affecting effectiveness of liquid-gas contact systems	Handout	CO5	
Lecture 33	Solids separation: sedimentation theory and principles, clarifier design parameters, removal efficiency of discrete and flocculent settling	Handout	CO5	
Lecture 34	Coagulation chemistry, theory of destabilization of colloidal particles, factors affecting coagulation and flocculation	Handout	CO5	
Lecture 35	Softening process and chemical reactions, split treatment, softening basins, water stabilization and re- carbonation	Handout	C05	
Lecture 36	Filtration theory and practice, characteristics, advantages and disadvantages of Roughing filter, Slow sand and Rapid sand filter, Filter operational difficulties	Handout	CO5	
Lecture 37	Ion exchange practice, advantages and disadvantages, breakthrough and regeneration in the Ion Exchange process,	Handout	CO5	
Lecture 38	Membrane processes: Reverse Osmosis principles and applications, Electro-dialysis.	Handout	CO5	

Class No.	Topics	References	Corresponding CO(s)
Lecture 39	Disinfection chemistry and kinetics, Chemical oxidant demand and break point chlorination	Handout	CO5
Lecture 40	Adsorption mechanisms and applications (GAC and PAC), Manganese removal: theory and criteria	Handout	CO5
Lecture 41	Arsenic and Iron removal: theory, reactions and criteria	Handout	CO5
Lecture 42	Class test-5, Overall review		

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least four class tests will be administered. Best three of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the term following the guideline of Academic Council.

#### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

#### 13. Textbook

- 1. Environmental Engineering by Peavy, Rowe, Tchobanoglous
- 2. Water Supply Engineering by M.A. Aziz
- 3. Water Supply and Sanitation for rural and low income urban communities by M. Feroze Ahmed and Md. Mujibur Rahman
- 4. **Water Safety Plan (WSP): a risk based approach for water safety** by Ashraf Ali, Muhammad, Mahbuboor R. Choudhury and Mujibur Rahman
- 5. Class Lecture Handout

#### 14. References

**2.** Type of Course

- 1. **Introduction to Environmental Engineering**, Fifth edition, by Mackengie L. Davies and David A. Cornwell, Mc Graw Hill Education.
- 2. CE 332: Environmental Engineering Sessional Class notes, BUET

# 20.29 Description of Course CE 332

#### **SECTION A: General Information**

- 1. Course Title Environmental Engineering Laboratory
  - Environmental Engineering (Compulsory)
- 3. Offered to Civil Engineering
- 4. Pre-requisite Course(s) None

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Water and wastewater sampling techniques, sample preservation, physical, chemical and biological tests of water and wastewater; breakpoint chlorination, alum coagulation, sampling and laboratory analysis of air, sampling and laboratory analysis of soil and solid waste.

## 6. Course Objectives

- To provide a clear concept on water and wastewater sampling technique and sample preservation.
- To provide a fundamental concept of physical, chemical, and biological tests for assessing the quality of water and wastewater.
- To make familiar with the Standard Code Specifications and Testing methods for the laboratory experiment.
- To develop report writing skills, analytical skills, and oral presentation skills for interpreting and analysing experimental data.
- 7. Knowledge required

Preliminary knowledge in environmental engineering

8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>apply</i> sampling and preservation techniques for environmental samples	PO(d) PO(i)	C2	Lectures, Class participation	Class Assessment, Lab Report, Viva, Quiz
2	<i>determine</i> physical, chemical, and biological characteristics of water and wastewater	PO(d) PO(e) PO(i)	C4	Lectures, Class participation	Class Assessment, Lab Report, Viva, Quiz
3	<i>estimate</i> design parameters for treatment of water and wastewater	PO(b) PO(d) PO(i)	C5	Lectures, Class participation	Class Assessment, Lab Report, Viva, Quiz

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

#### 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1								$\checkmark$												
CO-2						$\checkmark$		$\checkmark$												
CO-3			$\checkmark$					$\checkmark$												

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Water sampling methods for lab analysis	Laboratory Manual	CO1
Lecture 2	Determination of pH, color, turbidity, total solids, dissolved solids, and suspended solids in water	Laboratory Manual	CO2
Lecture 3	Determination of carbon dioxide, alkalinity, and hardness in water	Laboratory Manual	CO2
Lecture 4	Determination chloride and iron in water	Laboratory Manual	CO2
Lecture 5	Viva-1 and Quiz-1		

Class No.	Topics	References	Corresponding CO(s)
Lecture 6	Estimation of organic pollution load through determination of BOD and COD	Laboratory Manual	CO2
Lecture 7	Chemical coagulation of water: Alum coagulation	Laboratory Manual	CO2 CO3
Lecture 8	Determination of residual chlorine and chlorine demand: Break point chlorination	Laboratory Manual	CO2 CO3
Lecture 9-10	Determination arsenic in water; Determination of Total Coliform and Fecal Coliform for microbiological water quality analysis	Laboratory Manual	CO2
Lecture 11	Model test for estimation of design parameters for water treatment	Laboratory Manual	CO3
Lecture 12	Model test for estimation of design parameters for wastewater treatment	Laboratory Manual	CO3
Lecture 13	Review		
Lecture 14	Viva-2 and Quiz-2		

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Assessment: A short class assessment will be administered prior to each lecture. Average marks obtained from those will be counted towards grading.
- Viva: Two oral viva sessions will be held at the middle and the end of the term respectively.
- Quiz: Two comprehensive sessional quizzes will be held at the middle and the end of the term respectively following the guideline of Academic Council.

#### 12. Distribution of Marks

Item	Marks
Attendance	10%
Lab Report	15%
Class Assessment	20%
Viva	10%
Quiz	45%

13. Textbook

- 1. **Environmental Engineering Laboratory Manual**, Department of Civil Engineering, Bangladesh University of Engineering and Technology (BUET).
- 2. Chemistry for Environmental Engineering and Science, 4th & 5th Editions by Clair N Sawyer,

Perry L. McCarty, Gene F. Parkin, McGraw Hill

# 14. References

1. **Standard methods for the examination of water and wastewater**. American Public Health Association (APHA), Washington DC, USA.

# 20.30 Description of Course CE 333

# **SECTION A: General Information**

1.	Course Title	Environmental Engineering II
2.	Type of Course	Environmental Engineering (Compulsory)
3.	Offered to	Civil Engineering
4.	Pre-requisite Course(s)	None

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Introduction to waste management: liquid waste, solid waste, air and noise pollution.

Wastewater Engineering: introduction; estimation of wastewater; wastewater collection systems; hydraulics of sewer; design, construction and maintenance of sanitary sewer and storm drainage system; sewer appurtenances.

Wastewater characteristics; microbiology of wastewater; wastewater treatment and disposal; sludge treatment and disposal.

Sanitation and health; sanitation coverage in Bangladesh and SDG targets; onsite sanitation system including Fecal Sludge Management (FSM), pour-flush toilets, septic tank system, Anaerobic Baffled Reactor (ABR); Decentralized Wastewater Treatment Systems (DEWATS).

Plumbing system.

Sustainability of water and sanitation services, introduction to EIA.

- 6. Course Objectives
  - To make students understand the principles of different types of wastewater treatment system.
  - To describe the importance and scopes of sustainability and community management of water and sanitation services.
- 7. Knowledge required

Preliminary knowledge in environmental engineering

8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	Assess and select suitable water and sanitation services	PO(a) PO(b) PO(f) PO(g)	C6	Lectures, Class participation	Class test, final examination
2	Plan and design plumbing system	PO(b) PO(c)	C5	Lectures, Class participation	Class test, final examination
3	<i>classify</i> sanitation systems including fecal sludge management system	PO(a) PO(f) PO(g)	C2	Lectures, Class participation	Class test, final examination
4	<i>design</i> onsite sanitation systems, including pour-flush latrines and septic tanks	PO(c) PO(f) PO(g)	C6	Lectures, Class participation	Class test, final examination
5	<i>estimate</i> the wastewater generation, design flow rates, and <i>design</i> wastewater conveyance system.	PO(b) PO(c)	C2, C5	Lectures, Class participation	Class test, final examination
6	<i>comprehend</i> the principles and operations of different types of wastewater treatment systems	PO(a) PO(b)	C2	Lectures, Class participation	Class test, final examination
7	<i>comprehend</i> characteristics of wastewater and <i>classify</i> wastewater treatment processes and systems	PO(a) PO(b)	C2	Lectures, Class participation	Class test, final examination
8	<i>determine</i> design parameters of different unit operations and processes for wastewater treatment systems, and <i>identify</i> options for sludge treatment and disposal	PO(a) PO(c)	C5	Lectures, Class participation	Class test, final examination

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	√	112	R5		IL.	Ro	√ 	Ro		12	15	14	15	10	17	711	112	115	717	115
CO-2		$\checkmark$	$\checkmark$		$\checkmark$															
CO-3				$\checkmark$			$\checkmark$													
CO-4					$\checkmark$		$\checkmark$													
CO-5			$\checkmark$	$\checkmark$	$\checkmark$															
CO-6	$\checkmark$			$\checkmark$																
CO-7	$\checkmark$			$\checkmark$																
CO-8			$\checkmark$	$\checkmark$	$\checkmark$															

Class No.	Topics	References	Corresponding CO(s)
Lecture 1-4	Sustainability of water and sanitation services	Handout	CO1
Lecture 5-8	Participatory development approach in water and sanitation sector	Handout	CO1
Lecture 9-11	Community management in water and sanitation services	Handout	CO1
Lecture 12- 13	Plumbing system design	Handout	CO2
Lecture 14	Class test-1		
Lecture 15- 16	Typical Wastewater/Effluent Treatment Processes; Objectives of sampling from a WWTP/ETP; Grab and Composite sampling, planning for composite sampling	Handout	CO6 CO7
Lecture 17- 19	Wastewater Conveyance System: Types of wastewater conveyance systems; Sources of wastewater; Estimation of infiltration and inflow; Corrosion of sewer systems; Sulfide attack, hydrogen sulfide corrosion	Handout	CO3 CO5
Lecture 20- 23	Source specific estimation of wastewater generation: domestic, commercial and industrial sources; Types of sewer pipes in a typical sanitary sewer system; Hydraulic design of sewers; Sewer appurtenances: manholes, junctions and drop inlets/manholes	Handout	CO5
Lecture 24- 25	Sewer Construction: Trenching and excavation; Estimation of overburden load on sewer pipes; Bedding conditions for concrete pipes	Handout	CO5
Lecture 26- 27	Statistical Analysis of Wastewater Quantity and Parameters; Sustained Loading: Definition and examples of sustained loading; Estimation of sustained loadings; Problem solving	Handout	CO5
Lecture 28	Class test-2		
Lecture 29- 31	Wastewater characteristics Biochemical and chemical oxygen demand	Handout	CO7

Class No.	Topics	References	Corresponding CO(s)		
Lecture 32- 36	Treatment of wastewater: Treatment objectives, classification of treatment processes and treatment systems; Preliminary/preparatory treatment; Primary treatment, including design of sedimentation basin/clarifier; Microbiology of sewage; Secondary treatment of wastewater	Handout	CO6 CO7		
Lecture 37- 39	Treatment and disposal of industrial wastewater	Handout	CO6		
Lecture 40- 41	Sludge treatment and disposal	Handout	CO8		
Lecture 42	Class test-3				
Lecture 43- 45	Introduction to sanitation; Classification of wastes; Linkages between water supply, sanitation and health; Classification of sanitation system	Handout	CO3		
Lecture 46- 51	Low-cost onsite sanitation technologies: Hygienic latrine; Technological options for rural and urban low- income communities; Design of pit latrines and pour- flush latrines, including design options for areas of difficult hydro-geologic conditions.	Handout	CO4		
Lecture 52	Class test-4				
Lecture 53- 55	Design of septic tank system (septic tank and soakage pit); Design of anaerobic baffled reactor (ABR); Introduction to Fecal sludge management (FSM)	Handout	CO3 CO4		
Lecture 56	Class test-5				

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least five class tests will be administered. Best four of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the term following the guideline of Academic Council.
- **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

13. Textbook

- Wastewater Engineering: Treatment and Resource Recovery by Metcalf & Eddy, George Tchobanoglous, H. David Stensel, Ryujiro Tsuchihashi, Franklin L. Burton – McGraw Hill (4th and 5th Edition)
- 2. Sewerage Design, Trent McGee McGraw Hill
- 3. Water Supply and Sanitation: Rural and Low Income Urban Communities by M. Feroze Ahmed and Md. Mujibur Rahman, ITN-Bangladesh (3rd Edition)
- 14. References
  - 1. Handbook of Water and Wastewater Engineering, McGraw Hill

# 20.31 Description of Course CE 341

# **SECTION A: General Information**

- 1. Course Title
- 2. Type of Course
- 3. Offered to

**Principles of Soil Mechanics** 

- Geotechnical Engineering (Compulsory) **Civil Engineering**

**4.** Pre-requisite Course(s)

# **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Introduction to geotechnical engineering; formation, type and identification of soils; soil composition; soil structure and fabric; index properties of soils; engineering classification of soils; soil compaction; principles of total and effective stresses; permeability and seepage; stress-strain-strength characteristics of soils; compressibility and settlement behaviour of soils; lateral earth pressure; stress distribution.

CE 203

- 6. Course Objectives
  - To introduce fundamentals of Geotechnical Engineering
  - To introduce different soil strength parameters and corresponding field and laboratory tests.
  - To familiarize lateral earth pressure, wight -volume relationship and consolidation theory.
- 7. Knowledge required
  - Preliminary knowledge of Geology.
- **Course Outcomes** 8.

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>comprehend</i> the concept of formation, composition, structure and fabric and index properties of soils	PO(a),PO(b)	C2	Lectures, Class participation	Class test, final examination
2	<i>characterize, identify</i> and <i>classify</i> different types of soils (visual-manual procedure and engineering classification of soils)	PO(a),PO(b)	C4	Lectures, Class participation	Class test, final examination
3	<i>explain</i> the concept of shear strength of soils and to <i>evaluate</i> undrained shear strength and shear strength parameters (undrained and effective) based on laboratory tests (unconfined compression test, direct shear tests and different types of triaxial compression tests) and field test (field vane shear test)	PO(a),PO(b)	C2, C5	Lectures, Class participation	Class test, final examination
4	<i>explain</i> the concept of lateral earth pressure and to <i>evaluate</i> active and lateral earth pressures for designing retaining structures	PO(a),PO(b)	C2, C5	Lectures, Class participation	Class test, final examination
5	<i>explain</i> weight-volume relationships of soil and to <i>determine</i> compaction	PO(a),PO(b)	C2, C5	Lectures, Class participation	Class test, final examination

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
	characteristics of soils and their application in geotechnical design and construction				
6	<i>estimate</i> seepage and thereby to evaluate stability of hydraulic structures	PO(a),PO(b)	C5	Lectures, Class participation	Class test, final examination
7	<i>compute</i> increase in vertical stress distribution below the foundation due to various types of loading.	PO(a),PO(b)	C3	Lectures, Class participation	Class test, final examination
8	<i>estimate</i> the rate and amount of foundation settlement applying the concepts of one-dimensional consolidation theory in geotechnical problems	PO(a),PO(b)	C5	Lectures, Class participation	Class test, final examination

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

#### 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

Cos	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$			$\checkmark$																
CO-2	$\checkmark$			$\checkmark$																
CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-4	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-5	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-6	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-7	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-8	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																

Class No.	Topics	References	Corresponding CO(s)		
Lecture 1-2	Introduction to Geotechnical Engineering; Formation and different types of soil deposits	Lecture Materials	CO-1		
Lecture 3-4	Soil particle sizes and types of soil based on soil particle size; description and Identification of Soils (Visual –Manual Procedure).	Lecture Materials	CO-2		
Lecture 5	Primary and secondary structures of soils; Structure and Fabric of coarse-grained soils and clay soils; Shape of coarse-grained soil particle	Lecture Materials	CO-1		
Lecture 6-7	Soil Classification tests and index properties of soils; Grain size analyses by dry sieving, wash sieving and	Lecture Materials	CO-1, CO-2		

Class No.	Topics	References	Corresponding CO(s)		
	hydrometer; Grain size distribution curves; Definition of uniformity coefficient and Coefficient of curvature and effective diameter of coarse grained soils; Well graded, poorly graded and gap graded sands.				
Lecture 8	Solution of numerical problems involving grain size analyses of coarse grained soils (sands) Combined analyses (Sieve and Hydrometer) to determine particle size distributions of fine grained soils (clays and silts).	Lecture Materials	CO-1, CO-2		
Lecture 9	Definitions of Atterberg limits (liquid limit, plastic limit, Shrinkage limit); Plasticity index, Linear shrinkage, Flow index, Toughness index, liquidity index, consistency index and Activity of fine- grained soil.	Lecture Materials	CO-1, CO-2		
Lecture 10-11	Experimental determination of liquid limit and plastic limit using Casagrande's apparatus and Cone penetrometer (fall cone) apparatus. One Point method of determining liquid limit. Experimental determination of shrinkage limit; Derivation of expressions for shrinkage limit for known and unknown specific gravity of soil solids (G _s ).	Lecture Materials	CO-1, CO-2		
Lecture 12-13	Engineering Classification of Soils; Unified Soil Classification System (USCS); Casagrande's Plasticity Chart based on USCS; Group symbols for cohesionless soils (coarse grained) and cohesive soils (fine grained soils) based on Casagrande's Plasticity Chart; Solution of numerical problems involving Unified Soil Classification System (USCS).	Lecture Materials	CO-2		
Lecture 14	Engineering Classification of Soils by AASHTO Soil Classification System; Solution of numerical problems involving AASHTO Soil Classification System.	Lecture Materials	CO-2		
Lecture 15-16	Concept of shear strength of soils, factors affecting shear strength of soils; Shear stress and normal stress on failure plane; Mohr Circles; Mohr-Coulomb Failure Envelope in terms of shear and normal stresses; Mohr-Coulomb Failure Envelope in terms of minor principal stress and major principal stress.	Lecture Materials	CO-3		
Lecture 17-18	Shear strength parameters; Undrained shear strength parameters and effective Shear strength parameters; Consolidated drained Direct Shear test on sands (loose sand and dense sand) and clays (normally consolidated and overconsolidated); Merits and demerits of Direct shear test; Concept of peak shear strength and residual strength of clays and sands; critical voids ratio of sand; Computations of effective shear strength parameters (effective cohesion, c´ and effective angle of internal friction, $\phi$ ') considering peak shear strength and residual shear strength	Lecture Materials	CO-3		
Lecture 19	Unconfined compression test, unconfined compressive strength and undrained shear strength, consistency of clays based on undrained shear strength; Sensitivity and thixotropy.	Lecture Materials	CO-3		

Class No.	Topics	References	Corresponding CO(s)
Lecture 20-21	Triaxial compression tests, Advantages of triaxial compression test over direct shear test, Unconsolidated undrained (UU), consolidated undrained (CU) and consolidated drained (CD) Triaxial compression tests; Behaviour of saturated sands (loose sand and dense sand) and clays (normally consolidated and overconsolidated) in UU, CU and CD Triaxial compression tests; Examples of UU, CU and CD analyses in clays.	Lecture Materials	CO-3
Lecture 22	Modified Failure Envelope; Skempton's Pore Pressure Coefficients A and B; Computation of Skempton's Pore Pressure Coefficients A at failure (A _f ) and B; Empirical relationships between Undrained shear strength ( $s_u$ ) and effective overburden pressure ( $\sigma v'$ ) for normally consolidated and overconsolidated clays.	Lecture Materials	CO-3
Lecture 23-24	Computation of undrained shear strength parameters (undrained cohesion, $c_u$ and and undrained angle of internal friction, $\phi_u$ ) and effective shear strength parameters (effective cohesion, c' and effective angle of internal friction, $\phi'$ ) from triaxial compression tests analytically, by drawing Mohr circles and Mohr- Coulomb Failure Envelope, and Modified Failure Envelope. Field vane shear test on soft clays; Computation of undrained shear strength ( $s_u$ ) of soft clays from field vane shear test.	Lecture Materials	CO-3
Lecture 25	Concept of at-rest, active and passive pressures; Coefficient of earth pressure at rest ( $K_0$ ); Coefficients of active earth pressure ( $K_a$ ) and passive earth pressure ( $K_p$ ); Rankine's theory of lateral earth pressure; Active and passive earth pressures in cohesionless soil, Derivation of expressions for active earth pressure and passive earth pressure in cohesive ( $\phi$ =0) and cohesive-frictional (c- $\phi$ ) soil.	Lecture Materials	CO-4
Lecture 26-27	Depth of tension crack; Unsupported height of wall; Effect of surcharge pressure on lateral pressure; Computations of active earth pressure distributions; Computations of total active force (thrust) and location of resultant active force (thrust) against retaining wall; Computations of total active force (thrust) before and after development of tension cracks for $\phi=0$ condition.	Lecture Materials	CO-4
Lecture 28	Rankine active and passive pressure with sloping backfill for cohesionless soil and cohesive-frictional ( $c-\phi$ ) soil; Computations of total active force (thrust) for cohesive-frictional ( $c-\phi$ ) sloping backfill after development of tension cracks; Coulomb's earth pressure theory.	Lecture Materials	CO-4
Lecture 29	Introduction to Geotechnical Engineering, History of development of Soil Mechanics.	Lecture Materials	CO-1
Lecture 30-32	Weight-Volume relationships of Soil Aggregate; Solving Example Problems.	Lecture Materials	CO-5
Lecture 33-34	Density Index and Compactions of Soils.	Lecture Materials	CO-1

Class No.	Topics	References	Corresponding CO(s)		
Lecture 35	Permeability of soil, Darcy's Principle and its limitations.	Lecture Materials	CO-6		
Lecture 36-37	Factors affecting coefficient of permeability and its determination in the Laboratory, Field Pumping Test.	Lecture Materials	CO-6		
Lecture 38-39	Principle of Effective stress, Seepage Pressure, Quick Condition.	Lecture Materials	CO-6		
Lecture 40	Continuity Equation and its graphical interpretation, Flow Nets construction for confined flow problem.	Lecture Materials	CO-6		
Lecture 41-42	Hydraulic force under a structure and safety of Hydraulic structure against Piping and Filter design to mitigate seepage force. Solving Examples Problems.	Lecture Materials	CO-6		
Lecture 43-44	Concept of 1D-Consolidation. Normally consolidate Clay, Over Consolidate Clay, Causes of over Consolidation and Determination of Pre- Consolidation Pressure Consolidation Test Procedure.	Lecture Materials	CO-8		
Lecture 45-47	Construction of Field e-log(p) curve for NC and OC clays and settlement calculation. Determination of Coefficient of Consolidation, , Coefficient of Compressibility and Coefficient of Volume compressibility, Settlement computation due to Primary Consolidation, Example Problems for settlement computation	Lecture Materials	CO-8		
Lecture 48-49	Derivation of 1D-Consolidation Equation, Determination of time factor $(T_v)$ , Coefficient of Consolidation $(c_v)$ , Example problems for rate calculation.	Lecture Materials	CO-8		
Lecture 50	Causes of Secondary Consolidation &Settlement due it. Application of 3D-Consolidation	Lecture Materials	CO-8		
Lecture 51-52	Boussinesq's Theory for Point Loading, Stress due to Line Load of Infinite Length, Stress due to Line Load of Finite Length.	Lecture Materials	CO-7		
Lecture 53-54	Stress due to Strip area Uniform Pressure, Triangular Pressure and Embankment Loading.	Lecture Materials	CO-7		
Lecture 55	Stress due to circular Loading and Rectangular Loading.	Lecture Materials	CO-7		
Lecture 56	Stress due to any arbitrary shape of Loading using Newmark's Influence Chart.	Lecture Materials	CO-7		

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least five class tests will be administered. Best four of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

#### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

### 13. Textbook

- a. Principles of Geotechnical Engineering Author: B.M. Das.
- b. Foundation Engineering; Authors: Ralph B. Peck, Walter E. Hanson, Thomas H. Thornburn

#### 14. References

- a. Advanced Soil mechanics Author: B. M. Das
- b. Soil Mechanics and Foundation Engineering Author: S.K. Garg
- c. An Introduction to Geotechnical Engineering Authors: Robert D. Holtz and William D. Kovacs
- d. Soil Mechanics Author: R. F. Craig
- e. Soil Mechanics and Foundation Engineering Author: V. N. S. Murthy
- f. Modern Geotechnical Engineering Author: Alam Singh
- g. Soil Mechanics Author: M. Pallanikumar
- h. Soil Mechanics and Foundations Author: B. C. Punmia

## 20.32 Description of Course CE 342

## SECTION A: General Information

1. Course Title

# **Geotechnical Engineering Laboratory**

- 2. Type of Course Geotechnical Engineering (Compulsory)
- **3.** Offered to
- **4.** Pre-requisite Course(s)

## **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Field identification tests of soils; grain size analysis by sieve and hydrometer; specific gravity test; Atterberg limits test; permeability tests; unconfined compression test; compaction test; relative density test; direct shear tests; consolidation tests; test of geotextiles.

**Civil Engineering** 

None

- 6. Course Objectives
  - To introduce different experimental methods required for engineering classification, stress-strainstrength characteristics, compressibility behaviour, compaction and flow properties of soils.
  - To familiarize with some routine tests (thickness, strip tensile strength, CBR puncture etc.) of geosynthetic materials.
- 7. Knowledge required

Preliminary knowledge in geotechnical engineering

8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>classify</i> different types of soil through field identification test and laboratory testing.	PO(a), PO(d)	C1, C3	Lectures, Class participation	Class Assessment, Lab Report, Viva, Quiz.
2	<i>determine</i> strength, permeability, consolidation and other characteristics of soil through experimental investigation.	PO(a), PO(d)	C1, C4	Lectures, Class participation	Class Assessment, Lab Report, Viva, Quiz.
3	<i>Introduce</i> some routine tests of geo-synthetic materials.	PO(a), PO(d)	C1, C3	Lectures, Class participation	Class Assessment, Lab Report, Viva, Quiz.

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

## 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

Cos	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$		$\checkmark$	$\checkmark$				$\checkmark$												
CO-2	$\checkmark$		$\checkmark$	$\checkmark$				$\checkmark$												
CO-3	$\checkmark$		$\checkmark$	$\checkmark$				$\checkmark$												

### 10. Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction And Field Identification Tests of Soils	Handout	CO1
Lecture 2	Specific Gravity of Soils and Grain Size Distribution	Handout	CO1
Lecture 3	Grain Size Analysis by Hydrometer	Handout	CO1
Lecture 4	Atterberg Limits Test	Handout	CO1
Lecture 5	Maximum-Minimum Density Tests of Sand		CO2
Lecture 6	Compaction Test	Handout	CO2
Lecture 7	Mid Quiz and Viva		
Lecture 8	Permeability Test	Handout	CO2
Lecture 9	Unconfined Compression Test	Handout	CO2
Lecture 10	Direct Shear Test	Handout	CO2
Lecture 11	Consolidation Test	Handout	CO2
Lecture 12	Test of Geotextiles	Handout	CO3
Lecture 13	Final Quiz and Viva		
Lecture 14	Extra Class If Required		

**11.** Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: Class assessment on almost all experiments will be administered.
- Final Examination: Quizzes and viva will be held at mid and the end of the Term.
- **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Assessment	20%
Lab Report	20%
Viva	20%
Mid Quiz	15%
Final Quiz	15%

### 13. Textbook

- a. Soil Testing for Engineers: T William Lambe
- b. Engineering Properties of Soils and Their Measurements: Joseph E. Bowels
- 14. References
  - a. Foundation Engineering: Peck, Hansen & Thornburn

## 20.33 Description of Course CE 351

## SECTION A: General Information

1.	Course Title Engineering	Transportation Engineering, I: Transportation Planning and	Traffic
2	Type of Course	Transportation Engineering (Compulsory)	
	Offered to	Civil Engineering	
4.	Pre-requisite Course(s)	None	

# SECTION B: Course Details

5. Course Content (As approved by the Academic Council)

Transportation engineering, transportation functions; transportation systems, functional components, factors in transportation development, transportation modes, public transportation, emerging modes; intelligent transportation system: components and applications; transport planning: concepts, scope and hierarchy, process, goals and objectives, inventories, socio-economic activities, land use-transport interaction, travel demand forecasting; road safety and accident analysis.

Geometric design of highways: design controls and criteria, cross sectional elements, alignment, sight distance, intersection and interchange layouts, planning and design of bicycle and pedestrian facilities; traffic engineering: fundamentals of traffic engineering, vehicle and traffic characteristics, traffic control devices and systems, traffic studies, planning and design of parking facilities, roadway lighting; transportation in Bangladesh: transportation modes and networks, constraints and challenges, transport demand and modal share, road classification and design standards.

- 6. Course Objectives
  - To introduce transport system planning, components, function; transportation modes, intelligent transport system, travel demand forecasting; fundamentals of traffic engineering
  - To learn to analyse socio-economic, land-use and other traffic survey and crash data
  - To learn to evaluate various transportation modes, transport performance, road types and design & safety standards, relevant Bangladesh issues
  - To learn to plan and design roadway elements and furniture including NMV and pedestrian facilities using standard design practices
- 7. Knowledge required

Preliminary Knowledge in Civil Engineering

8. Course Outcomes

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>explain</i> transport system planning, components, function; transportation modes, intelligent transport system, travel demand forecasting; fundamentals of traffic engineering	PO(a)	C2, C5, C6, A3, A4, P2	Lectures, Class participation	Class test, final examination

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
2	<i>analyse</i> socio-economic, land-use and other traffic survey and crash data	PO(a) PO(f)	C4	Lectures, Class participation	Class test, final examination
3	<i>evaluate</i> various transportation modes, transport performance, road types and design & safety standards; relevant Bangladesh issues	PO(c)	C4, C5	Lectures, Class participation	Class test, final examination
4	<i>plan</i> and <i>design</i> roadway elements and furniture including NMV and pedestrian facilities using standard design practices	PO(c)	C6, P7	Lectures, Class participation	Class test, final examination

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

#### 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

Cos	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1			$\checkmark$																	
CO-2							$\checkmark$													
CO-3					$\checkmark$															
CO-4					$\checkmark$															

10. Lecture Plan

Lecture No.	Торіс	Reference	Corresponding CO(s)
Lecture 1	Introduction to Transportation Engineering:	Reference Book1	CO1
Lecture 2	Transportation functions; functional components	Reference Book2	CO1
Lecture 3	Ttransportation system view, study and analysis	Reference Book 3	CO1
Lecture 4	Factors in transportation development	Reference Book 4	CO1
Lecture 5	Transportation modes,	Handout, book	CO3
Lecture 6	Emerging transport modes and technologies	Handout, book	CO1
Lecture 7	Intelligent transportation system, components and applications I	Handout, book	CO1
Lecture 8	Intelligent transportation system, components and applications-II	Handout, book	CO1
Lecture 9	Public transportation I	Handout, book	CO3

Lecture No.	Торіс	Reference	Corresponding CO(s)		
Lecture 10	Public transportation-II	Handout, book	CO3		
Lecture 11	Public transportation-III	Handout, book	CO3		
Lecture 12	Bangladesh Transportation Modes and networks,	Bangladesh RHD, LGED road database and manual	CO3		
Lecture 13	Bangladesh Transportation Constraints and Challenges,	CO3			
Lecture 14	Bangladesh Transport Demand and Modal share, Roadway Classification and design standards.	Handout, book	CO3		
Lecture 15	Bangladesh Roadway Classification and design standards.	Handout, book	CO3		
Lecture 16	<b>Transport Planning</b> : concepts, scope and hierarchy,	Handout, book	CO2		
Lecture 17	<b>Transport Planning</b> : process, goals and objectives,	Handout, book	CO2		
Lecture 18	<b>Transport Planning</b> : inventories, socioeconomic activities,	Handout, book	CO2		
Lecture 19	Transport Planning: land-use interaction,	Handout, book	CO2		
Lecture 20	<b>Transport Planning</b> : travel demand forecasting;	Handout, book	CO2		
Lecture 21	<b>Transport Planning</b> : travel demand forecasting;	Handout, book	CO2		
Lecture 22	<b>Transport Planning</b> : road safety and accident analysis.	Handout, book	CO2		
Lecture 23	Geometric design of highways: Design controls and criteria	Handout, book	CO4		
Lecture 24	Geometric design of highways: Cross sectional elements	Handout, book	CO4		
Lecture 25	Geometric design of highways: alignment, sight distances,	Handout, book	CO4		
Lecture 26	Geometric design of highways: intersections and interchanges layouts,	Handout, book	CO4		
Lecture 27	<b>Geometric design of highways</b> : Planning and design of bicycle and pedestrian facilities.	Handout, book	CO4		

Lecture No.	Торіс	Reference	Corresponding CO(s)
Lecture 28	<b>Geometric design of highways</b> : Planning and design of bicycle and pedestrian facilities.	Handout, book	CO4
Lecture 29	<b>Traffic engineering</b> : Fundamentals of Traffic Engineering;	Handout, book	CO4
Lecture 30	<b>Traffic engineering</b> : Fundamentals of Traffic Engineering;	Handout, book	CO4
Lecture 31	<b>Traffic engineering</b> : Vehicle and traffic characteristics,	Handout, book	CO4
Lecture 32	<b>Traffic engineering</b> : Vehicle and traffic characteristics,	Handout, book	CO4
Lecture 33	<b>Traffic engineering</b> : Vehicle and traffic characteristics	Handout, book	CO4
Lecture 34	<b>Traffic engineering</b> : Vehicle and traffic characteristics,	Handout, book	CO4
Lecture 35	<b>Traffic engineering</b> : Traffic control devices and systems,	Handout, book	CO4
Lecture 36	<b>Traffic engineering</b> : Traffic control devices and systems,	Handout, book	CO4
Lecture 37	Traffic engineering: Traffic studies,	Handout, book	CO4
Lecture 38	Traffic engineering: Traffic studies,	Handout, book	CO4
Lecture 39	<b>Traffic engineering</b> : Planning and design of Parking facilities,	Handout, book	CO4
Lecture 40	<b>Traffic engineering</b> : Planning and design of Parking facilities,	Handout, book	CO4
Lecture 41	Traffic engineering: Roadway lighting.	Handout, book	CO4
Lecture 42	Traffic engineering: Roadway lighting.	Handout, book	CO4

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least three class tests will be administered. Best two of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

**12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

## 13. Textbook

- 1. Class Lecture Handout
- 14. References
  - 1. Principles of Transportation Engineering, Chakrobarty and Das, PHI Pub
  - 2. Transportation Engineering: An Introduction, by Khisty and Lall
  - 3. Introduction to Transportation Systems, By Joseph sussman, MIT press
  - 4. Principles of Highway Engineering and Traffic Analysis by Fred L.Mannering, Walter P. Kilareski, and Scott S. Washburn
  - 5. Kadiyali, L.R., "Traffic Engineering and Transport Planning", Second Edition, 1983.
  - 6. Singh, G. C., "Highway Engineering", Third Edition, 1991.
  - 7. Wright, P.H. and Paquette, R.J., "Highway Engineering", Fifth Edition, 1993.
  - 8. O'Flaherty, C.A., "Highways and Traffic", Volume 1, Second Edition, 1983.
  - 9. Matson, M.T. and Hurd, W.F.," Traffic Engineering", McGraw-Hill, 1955.

# 20.34 Description of Course CE 400

## SECTION A: General Information

- 1. Course Title Undergraduate Thesis
- 2. Type of Course Basic Engineering Laboratory (Compulsory)
- **3.** Offered to

Civil Engineering (L4/T1 - L4/T2)

4. Pre-requisite Course(s) None

## **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Experimental and theoretical investigation of various topics in structural engineering, environmental engineering, transportation engineering and geotechnical engineering. Individual or group study of one or more topics from any of the above fields. The students will be required to present and submit thesis at the end of the work.

- 6. Course Objectives
  - Students will be able to apply the basic and specialized engineering knowledge in solving new problems
  - Students will learn literature review
  - Students will be able to develop research methodology in solving a problem considering available resources and technology
  - Students will be able to analyse and interpret data/reports

## 7. Knowledge required

Fundamentals of Civil Engineering, Basic Science

## 8. Course Outcomes

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>apply</i> the basic and specialized engineering knowledge in solving engineering problems	PO(b)	C3	Lectures/Instructions, Project participation	Presentation, Report
2	<i>identify</i> and <i>summarize</i> relevant literature	PO(l), PO(h)	C5, A2	Lectures/Instructions, Project participation	Presentation, Report
3	<i>critically evaluate</i> alternative approaches in solving problems	PO(d)	C5	Lectures/Instructions, Project participation	Report

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
4	<i>develop</i> research methodology in solving a problem considering available resources and technology	PO(c)	C6	Lectures/Instructions, Project participation	Presentation, Report
5	<i>analyse</i> and <i>interpret</i> data/results generated from the research work and relevant literature	PO(d)	C4, A5	Lectures/Instructions, Project participation	Presentation, Report
6	<i>demonstrate</i> behaviour consistent with academic integrity expectation	PO(h)	A3	Lectures/Instructions, Project participation	Presentation, Report
7	<i>communicate</i> knowledge in a scientific manner	PO(j)	C5, A2	Lectures/Instructions, Project participation	Presentation

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

#### 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

Cos	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1			$\checkmark$	$\checkmark$					$\checkmark$									$\checkmark$		$\checkmark$
CO-2							$\checkmark$											$\checkmark$		
CO-3								$\checkmark$	$\checkmark$		$\checkmark$					$\checkmark$				$\checkmark$
CO-4					$\checkmark$						$\checkmark$	$\checkmark$				$\checkmark$				
CO-5								$\checkmark$	$\checkmark$									$\checkmark$		
CO-6							$\checkmark$									$\checkmark$				
CO-7																		$\checkmark$		

10. Lecture Plan

Not Applicable

- **11.** Assessment Strategy
  - Class Participation: Class participation and attendance will be recorded in every class. •
  - Presentation: A brief ppt presentation will be held on relevant topics
  - Dissertation Writing: A brief report on the research topic
- **12.** Distribution of Marks

Item	Marks
Application of basic engineering knowledge	10%
Literature review	10%
Rationale and objective	10%
Methodology	20%
Analysis and discussion	20%
Presentation and writing	20%
Academic integrity, references	10%
Total	100%

13. Textbook

Not Applicable

14. References

Not Applicable

## 20.35 Description of Course CE 401

## **SECTION A: General Information**

**Project Planning and Construction Management** 1. Course Title

None

- 2. Type of Course
- **3.** Offered to

Basic Engineering (Compulsory)

- **Civil Engineering**
- **4.** Pre-requisite Course(s)

## **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Project evaluation: cash flow and net present value, perpetuities and annuities, internal rate of return, payback period, benefit-cost ratio, real and nominal interest rate, capital budgeting, risk versus return, capital asset pricing model and project cost of capital, financial and economic feasibility, sensitivity analysis.

Leading and managing teams: human resource management, dysfunctions in teams, team development, conflict management, leading teams, self-managing teams, decision making in teams, case study.

Project operation management: project as a process, inventory management, economic order quantity, demand forecasting -newsvendor model, labour and plant management - line balancing, legal and ethical issues in project – case study, environmental regulations, procurement – value for money (VfM).

Project planning and control: planning and scheduling, PERT, CPM, resource scheduling, linear programming and application.

Construction management: principles, project organization, methods and practices, technology, management of materials and equipment, site management, contracts and specifications, inspection and quality control, quality assurance, safety, economy

- **6.** Course Objectives
  - To introduce various feasibility tools to evaluate engineering projects
  - To acquire knowledge regarding construction management.
  - To acquire knowledge for assessing feasibility reports. •
  - To acquire knowledge on ethical issues of project management.
- 7. Knowledge required: Preliminary knowledge in Civil Engineering
- **8.** Course Outcomes

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>assess</i> financial and economic feasibility report using various techniques for a project	PO(k)	C5	Lectures, Class participation	Class test, final examination
2	<i>differentiate</i> various knowledge area of project management based on established book of knowledge	PO(k)	C4	Lectures, Class participation	Class test, final examination
3	<i>prepare</i> a project plan and relevant documentation	PO(k)	C3	Lectures, Class participation	Class test, final examination
4	<i>schedule</i> a project using network planning techniques with relevant software tools	PO(c)	C3	Lectures, Class participation	Class test, final examination
5	<i>formulate</i> a linear programming model for resource allocation and optimization and <i>solve</i> the model using simplex method	PO(k)	C6	Lectures, Class participation	Class test, final examination

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
	using appropriate software and programming tools				
6	<i>describe</i> legal, ethical and environmental issues of project management	PO(g)	C2	Lectures, Class participation	Class test, final examination

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1				$\checkmark$																
CO-2																				
CO-3				V																
CO-4					$\checkmark$															
CO-5						$\checkmark$														
CO-6																				

10. Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction to Project and Project management	Handout	CO1
Lecture 2	Project Organization	Handout, Masters	CO1
Lecture 3	Project Life Cycle	Handout, Masters	CO1
Lecture 4	Class Test 1		CO1
Lecture 5-6	Project Time Management	Handout, Masters	CO2
Lecture 7-8	Project Cost Management	Handout, Masters	CO2
Lecture 9-10	Project Safety Management, Safety Precautions required in Construction industry	Handout, Masters	CO2
Lecture 11- 12	Project Quality Management	Handout, Masters	CO2
Lecture 13	Construction Equipment	Handout, Masters	CO2
Lecture 14	Review, Class test 2		CO2
Lecture 15	The Project Planning Process	Handout	CO3

Class No.	Topics	References	Corresponding CO(s)		
Lecture 16	Components of a Project Plan	Handout, Masters	CO3		
Lecture 17	Work Breakdown Structure (WBS)	Handout, Masters	CO3		
Lecture 18	Scheduling of Projects	Handout, Masters	CO4		
Lecture 19	Network Planning Techniques	Handout, Masters	CO4		
Lecture 20	The Critical Path Method (CPM)	Handout, Masters	CO4		
Lecture 21	Project Evaluation and Review Technique (PERT)	Handout, Masters	CO4		
Lecture 22	Reducing Project Completion Time: Project Crashing	Handout, Masters	CO4		
Lecture 23	Resource Analysis and Scheduling	Handout, Masters	CO4		
Lecture 24	Standard Linear Programming (LP) Problems and their Characteristics	Handout, Masters	CO5		
Lecture 25	Formulation of Linear Programming Problems	Handout, Masters	CO5		
Lecture 26	Solution of Standard Linear Programming Problems	Handout, Masters	CO5		
Lecture 27	Review		CO5		
Lecture 28	Class Test		CO5		
Lecture 29	Introduction	Handout	CO2		
Lecture 30	Role of Human Resource Management	Handout, Masters	CO2		
Lecture 31	Team and Team development	Handout, Masters	CO2		
Lecture 32	Team Conflict	Handout, Masters	CO2		
Lecture 33	Leadership and Building Team Performance	Handout, Masters	CO2		
Lecture 34	Effective Decision Making in Teams	Handout, Masters	CO2		
Lecture 35	Simulation on Decision Making in Teams	Handout, Masters	CO2		
Lecture 36	Inventory Management and Economic Order Quantity (EOQ)	Handout, Masters	CO2		
Lecture 37	Newsvendor Model for Optimal Inventory Forecasting	Handout, Masters	CO2		
Lecture 38	Line Balancing for Labour and Plant Management	Handout, Masters	CO2		
Lecture 39	Legal & Ethical Issues in Construction Management	Handout, Masters	CO6		
Lecture 40	Procurement and Value for Money	Handout, CO2 Masters			
Lecture 41	Environmental Regulations	Handout, Masters	CO2		

Class No.	Topics	References	Corresponding CO(s)
Lecture 42	Class Test 1		CO2 CO6
Lecture 43	Time Value of Money	Handout, Masters	CO2
Lecture 44	Annuity and Perpetuity	Handout, Masters	CO2
Lecture 45	NPV and IRR	Handout, Masters	CO2
Lecture 46	BCR, Payback Period and Annual equivalent annuities	Handout, Masters	CO2
Lecture 47	Project Discount Rate	Handout, Masters	CO2
Lecture 48	Weighted Average Cost of Capital	Handout, Masters	CO2
Lecture 49	Class Test 2		CO2
Lecture 50	Financial Feasibility Analysis	Handout, Masters	CO2
Lecture 51	Case study on Financial Feasibility of Project	Handout, Masters	CO2
Lecture 52	Economic Feasibility Analysis	Handout, Masters	CO2
Lecture 53	Case study on Economic Feasibility of Project	Handout, Masters	CO2
Lecture 54	Class Test 3		CO2
Lecture 55	Feasibility Study Report and Development Project Proposal (DPP)	Handout, Masters	CO2
Lecture 56	Conclusion		CO2

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least five class tests will be administered. Best four of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

12. Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

13. Textbook

1. Project Management, 3rd Ed, A Systems Approach to Planning, Scheduling and Controlling, Harold Kenzier

2. Project Management, A Managerial Approach, 4th Ed, Jack R. Meredith, Samuel J. Mantel, Jr.

3. PMBOK Guide

4. Katzenbach, J. R., & Smith, D. K. (2008). The discipline of teams. Harvard Business Press.

5. Druskat, V. U., & Wheeler, J. V. (2004). How to lead a self-managing team. MIT Sloan Management Review, 45(4), 65.

6. Gilley, J. W., Morris, M. L., Waite, A. M., Coates, T., & Veliquette, A. (2010). Integrated theoretical model for building effective teams. Advances in Developing Human Resources, 12(1), 7-28.

7. Jehn, K. A., & Bendersky, C. (2003). Intragroup conflict in organizations: A contingency perspective on the conflict-outcome relationship. Research in organizational behavior, 25, 187-242.

- 8. Goleman, D. (2000). Leadership that gets results. Harvard business review, 78(2), 4-17
- 9. Cachon, G., & Terwiesch, C. (2008). Matching supply with demand. McGraw-Hill Publishing.
- 10. Asian Development Bank. (1999). Handbook for the Economic Analysis of Water Supply Projects
- 11. Asian Development Bank. (1997). Guidelines for the economic analysis of projects.

12. Campbell, H. F., & Brown, R. P. (2003). Benefit-cost analysis: financial and economic appraisal using spreadsheets. Cambridge University Press

13. Andrews, G.C and Kemper, J.D. Canadian Professional Engineering Practice and Ethics.

14. Sales, H.E., Professional communication in Engineering.

15. Leo Finkelstein, Jr., Pocket book of technical writing for Engineers and Scientist.

14. References: N/A

## 20.36 Description of Course CE 403

## SECTION A: General Information

- 1. Course Title Sustainability of Development Projects
- 2. Type of Course Basic Engineering
- 3. Offered to Civil Engineering
- 4. Pre-requisite Course(s) None

#### **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Environment and sustainable development; sustainable development goals (SDGs); economics and social structure; development and economic growth; socio-economic indicators; concept of human

development, human development index; gender related human development index; human poverty and human poverty index; poverty reduction strategies in Bangladesh.

Socio-economic aspects of development projects; human interest related aspects; land loss, land use and land ownership patterns; population displacement; resettlement and rehabilitation strategy; inequalities in distribution of benefits and losses.

Socio-economic impact assessment approach; socio-economic survey; case studies.

- 6. Course Objectives
  - identify the various socio-economic impacts of development projects.
  - prepare outlines of Social Impact Assessment (SIA) of various development projects with specific focus on land acquisition and resettlement related action plans
  - lean the importance and means of local community participation, Client Cantered Approach, and locally available resources in design, planning, and implementing a development project
  - integrate SDGs goals, targets, indicators, various socio-economic Development Indicators to evaluate the outcomes of a development project
- 7. Knowledge required: Basic engineering and social science

### 8. Course Outcomes

At the end of the course a student should be able to

CO	CO Statement	Corresponding	Domains	Delivery	Assessment
No.		PO(s)*	and Taxonomy level(s)**	Method(s) and Activity(-ies)	Tool(s)
1	<i>identify</i> the various socio- economic impacts of development projects; specifically <i>identify</i> the land acquisition and resettlement related key issues for large scale development projects emphasizing the Bangladesh context	PO(f)	C4, C4, A4, A5	Lectures, Class participation	Class test, term project, assignment, final examination
2	<i>prepare</i> outlines of Social Impact Assessment (SIA) of various development projects with specific focus on land acquisition and resettlement related impacts	PO(f), PO(g), PO(j)	C4, C6 A4, A5	Lectures, Class participation	Class test, term project, assignment, final examination
3	<i>lean</i> the importance and means of local community participation and locally available resources in development projects	PO(f), PO(g)	C2, A2	Lectures, Class participation	Class test, term project, assignment, final examination
4	<i>integrate</i> tools for incorporating Client Cantered Approach for design, planning, and implementing development projects	PO(f), PO(g)	C4, C6, A4	Lectures, Class participation	Class test, assignment, final examination
5	<i>integrate</i> SDGs goals, targets, indicators, various socio- economic Development Indicators to <i>evaluate</i> the outcomes of various development projects	PO(f), PO(g)	C3, C5, A5	Lectures, Class participation	Class test, assignment, final examination

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1							$\checkmark$													
CO-2							$\checkmark$													
CO-3							$\checkmark$													
CO-4							$\checkmark$													
CO-5							$\checkmark$													

### 10. Lecture Plan

Class No.	Topics	References	Correspondin g CO(s)
Class 1	Introduction to development projects and sustainability	Handout	CO-1, CO-2
Class 2	Introduction to development projects and related Socio-economic issues	Handout	CO-1, CO-2
Class 3	Introduction to socio-economic impact assessment	Handout	CO-2
Class 4	Outlines of socio-economic impact assessment study for a development project	Handout	CO-2
Class 5	Overview of legislations and policies for land acquisition and resettlement for a development project	Handout	CO-2
Class 6	Overview of legislations and policies for land acquisition and resettlement for a development project	Handout	CO-2
Class 7	Socio-economic data collection methods for a SIA study	Handout	CO-2
Class 8	Analysis of Socio-economic data	Handout	CO-2
Class 9	Identification of Socio-economic impacts of a development project for a SIA study	Handout	CO-1, CO-2
Class 10	Identification of impacts of land acquisition	Handout	CO-1, CO-2
Class 11	Class Test-1	-	-
Class 12	Identification of mitigation measures for land acquisition and resettlement related impact	Handout	CO-2, CO-3
Class 13	management, and monitoring framework for mitigation measures	Handout	CO-2, CO-3
Class 14	Institutional arrangement for implementing land acquisition and resettlement related action plan	Handout	CO-2, CO-3
Class 15	grievance redress mechanism for implementing land acquisition and resettlement related action plan	Handout	CO-2, CO-3
Class 16	Social structure, economics, development, and economic growth	Handout	CO-2, CO-3
Class 17	Traditional concept of development	Handout	CO-5
Class 18	Traditional indicators of development	Handout	CO-5
Class 19	Concept of Sustainable Development	Handout	CO-5
Class 20	Class Test-2	-	-
Class 21	Introduction to Sustainable Development Goals (SDGs)	Handout	CO-5

Class No.	Topics	References	Correspondin g CO(s)		
Class 22	SDGs: Goals	Handout	CO-5		
Class 23	SDGs: Targets and Indicators	Handout	CO-5		
Class 24	SDGs: Targets and Indicators	Handout	CO-5		
Class 25	Linking SDGs goals and targets and outcomes of development projects	Handout	CO-5		
Class 26	Linking SDGs goals and targets and outcomes of development projects	Handout	CO-5		
Class 27	Development Indices	Handout	CO-5		
Class 28	Development Indices	Handout	CO-5		
Class 29	Class Test-3	-	-		
Class 30	Introduction to Client Cantered Approach	Handout	CO-3, CO-4		
Class 31	Application of Client Cantered Approach for design, planning and implementing development projects	Handout	CO-3, CO-4		
Class 32	Application of Client Cantered Approach for design, planning and implementing development projects	Handout	CO-3, CO-4		
Class 33	Land-use and land ownership patterns in Bangladesh	Handout	CO-1, CO-2, CO-3		
Class 34	land loss, land-use and land ownership patterns from implementing development projects	Handout	CO-1, CO-2, CO-3		
Class 35	land loss, land use and land ownership patterns from implementing development projects	Handout	CO-1, CO-2, CO-3		
Class 36	inequalities in distribution of benefits and losses of development projects	Handout	CO-1, CO-3, CO-4		
Class 37	inequalities in distribution of benefits and losses of development projects	Handout	CO-1, CO-3, CO-4		
Class 38	Poverty reduction strategies in Bangladesh	Handout	CO-1, CO-5		
Class 39	Poverty reduction strategies and plan, and design for development projects	Handout	CO-1, CO-5		
Class 40	Poverty reduction strategies and plan, and design for development projects	Handout	CO-1, CO-5		
Class 41	Class Test-4	-	-		
Class 42	Review Class/Discussion on Final Exam Preparation	-	-		

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least four class tests will be administered. Best three of them will be counted towards grading. Term project/Assignment can be considered as equivalent to class test.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

#### 12. Distribution of Marks

Item	Marks
Attendance/ Class participation	10%
Class Tests/Term Project	20%
Final Examination	70%

13. Textbook: N/A

14. References: N/A

## 20.37 Description of Course CE 404 SECTION A: General Information

1.	Course Title	Capstone Project CE 404
2.	Type of Course	Basic Engineering Laboratory (Compulsory)

3. Offered to Civil Engineering

4. Pre-requisite Course(s) None

## **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Planning, analysis and design of an integrated civil engineering project with emphasis on structural engineering/ environmental engineering/ transportation engineering/ geotechnical engineering specialization. Students shall work in teams to apply civil engineering theories, methodologies, and skills to assess the technical, environmental, and social feasibility of the project including design and cost estimation. Student shall engage their diverse civil engineering and cross disciplinary knowledge to prepare plans and specifications of the project including Bill of Quantity (BoQ) and tender documents.

Students shall present their projects and submit project reports at the end of the work.

- **6.** Course Objectives
  - To teach students how to apply modern engineering tools and techniques
  - To make students realize how teamwork and collaboration works in a project
  - To test the ability to find best solutions from alternative approaches
  - To evaluate the ability to integrate previous knowledge and experience
- 7. Knowledge required
  - 1. Fundamentals of Civil Engineering
- 8. Course Outcomes

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>apply</i> the techniques, skills and modern engineering tools necessary for engineering practice	PO(e)	C3	Lectures/Instructions, Project participation	Presentation, Reports
2	<i>demonstrate</i> teamwork ability to work collaboratively with fellow team members and end users	PO(i)	C3	Lectures/Instructions, Project participation	Presentation, Reports
3	<i>evaluate</i> alternative approaches to identify best solutions considering economic,	PO(f), PO(g)	C6	Lectures/Instructions, Project participation	Presentation, Reports

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
	environmental, social, ethical, health and safety, constructability, and sustainability aspects				
4	<i>comprehend</i> and <i>demonstrate</i> professional and ethical responsibility	PO(h)	C3	Lectures/Instructions, Project participation	Presentation, Reports
5	<i>integrate</i> previous knowledge and experience to enhance life- long learning abilities for their future personal and professional pursuits	PO(I)	C5	Lectures/Instructions, Project participation	Presentation, Reports
6	<i>apply</i> knowledge for effective project management to ensure efficient use of time, financial resources, and other materials resources.	PO(k)	C3	Lectures/Instructions, Project participation	Presentation, Reports
7	<i>communicate</i> the design and outcomes of the project in educational and professional settings	PO(j)	C5	Lectures/Instructions, Project participation	Presentation, Reports

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

### 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	<b>P1</b>	P2	P3	P4	P5	<b>P6</b>	P7	A1	A2	A3	A4	A5
CO-1						$\checkmark$			$\checkmark$	$\checkmark$					$\checkmark$	$\checkmark$		$\checkmark$		
CO-2							$\checkmark$										$\checkmark$			
CO-3							$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$		
CO-4 CO-5							$\checkmark$					$\checkmark$								
									$\checkmark$					$\checkmark$					$\checkmark$	
CO-6									$\checkmark$	$\checkmark$		$\checkmark$					$\checkmark$		$\checkmark$	
CO-7																				

### 10. List of Deliverables

No.	Deliverable	Timeline	Format
	Level-4/T	Cerm-1	
1	Project Proposal	Week 3	Writeup and Presentation
2	Detail planning, methodology, data/survey requirement, stakeholder identification, and identification of external expert requirement	Week 5	Writeup
3	Data/survey Summary	Week 8	Writeup
4	Preliminary Analysis and Design	Week 11	Writeup

No.	Deliverable	Timeline	Format							
5	Analysis of Alternatives and	Week 12	Writeup and							
5	preliminary cost estimation	WEEK 12	Presentation							
	Feasibility Study (Technical, Social,		Writeup and							
6	Environmental, Economic and	Week 13/Week 14	Presentation							
	Financial)									
	Level-4/Term-2									
7	Analysis scheme for detail design	Week 1	Writeup							
8	Analysis output	Week 3	Writeup and							
0		week 5	Presentation							
9	Detail Design Report	Week 8	Writeup, Drawings,							
9		week o	and Presentation							
10	Final BoQ, and Cost Estimation	Week 10	Writeup, and							
10	Final BoQ, and Cost Estimation	week 10	Presentation							
11	Tender Document, Implementation	Week 12	Writeup							
11	Schedule	WEEK 12								
12	Final Report	Week 13/14	Writeup and							
12		WCCK 15/14	Drawings							
13	Final Presentation	Week 13/14	Presentation							

- Class Participation: Class participation and attendance will be recorded in every class.
- Presentation: A brief ppt presentation will be held on relevant topics
- Report: A brief report on the project & its outcome
- 12. Distribution of Marks [Rubric for evaluation]

СО	Description	Criteria	Weightage
CO1	Application of modern engineering tools	Applied tools for design, drawings, etc.	10%
CO2	Work on a Team		10%
CO3	Alternative analysis	Environmental Aspects, health and safety considered	10%
03	presented	Social and ethical obligation considered	10%
CO4	Professional and ethical responsibility		10%
CO5	Lifelong learning	Apply knowledge and demonstrate the ability to learn new skills	10%
		Prepared Tender Document	5%
CO6	effective project	Prepared BoQ	5%
	management – time, financial	Show Financial Assessment	5%
		Show time management skill	5%

СО	Description	Criteria	Weightage
		Drawing	5%
CO7	Communication	Presentation	5%
		Report	10%
Sum			100%

- 13. Textbook
  - Not applicable

14. References

Not applicable

## 20.38 Description of Course CE 405

## **SECTION A: General Information**

1.	Course Title	<b>Business and Career Development</b>
2.	Type of Course	Basic Engineering (Optional)
3.	Offered to	Civil Engineering

4. Pre-requisite Course(s) None

### **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Understanding and managing organizations: structural, human resource, political, symbolic fames. Developing strategy and competitive advantage: industry analysis, complementor, understanding value, strategy development.

Managing disruptive innovations - understanding innovation, organizing for innovation.

Marketing management: capturing market insight, connecting with customers, communicating value, building strong brands.

Career development: definition of career, value of career development, external and internal dimensions of career, career stages, preparing for job search, networking, interview, career fairs, internship, building online brand, preparing resume, civil engineering careers of the future and vision for civil engineering.

Becoming an entrepreneur: identify opportunity, developing business model, designing value Proposition, Lean Start-ups, Hypothesis Testing, Sales & Marketing

- 6. Course Objectives
  - To introduce the business strategy
  - To familiarise with the marketing management
  - To introduce different aspects related to career development
- 7. Knowledge required: Basic knowledge in Civil Engineering
- 8. Course Outcomes

CO	CO Statement	Corresponding	Domains and	Delivery Method(s)	Assessment
No.		PO(s)*	Taxonomy	and Activity(-ies)	Tool(s)
1	<i>dissect</i> organizations using multiple frames and develop	PO(k)	level(s)** C4, C6	Lectures, Class participation	Class test, final examination

CO	CO Statement	Corresponding	Domains and	Delivery Method(s)	Assessment
No.		PO(s)*	Taxonomy level(s)**	and Activity(-ies)	Tool(s)
	strategies to utilize competitive advantage				
2	<i>identify</i> the sources of innovation and display the attributes of a successful entrepreneur	PO(l)	C4, A5	Lectures, Class participation	Class test, final examination
3	<i>practice</i> techniques of effective communication and professional conduct in a professional setting	PO(j)	A4	Lectures, Class participation	Class test, final examination
4	<i>apply</i> the concepts of market management	PO(k)	C3	Lectures, Class participation	Class test, final examination

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$																			
CO-2	$\checkmark$																			
CO-3	$\checkmark$																			
CO-4	$\checkmark$																			

**10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Career Definition	Handout	CO1
Lecture 2	Career for civil engineers	Handout	CO1
Lecture 3	Preparing for job search	Handout	CO3
Lecture 4	The job search	Handout	CO3
Lecture 5	Class Test 1		
Lecture 6	Internship	Handout	CO3
Lecture 7	Resumes	Handout	CO3
Lecture 8	Career Fair	Handout	CO3
Lecture 9	Interviews	Handout	CO3
Lecture 10	Class Test 3		
Lecture 11	World Economic Forum – Future of Job	Handout	CO2, CO3
Lecture 12	Civil Engineering Body of Knowledge for the 21st Century	Handout	CO2, CO3
Lecture 13	Career Development Guide	Handout	CO2, CO3
Lecture 14	Cover Letters	Handout	CO3
Lecture 15	Introduction	Handout	CO1
Lecture 16-18	Organisation	Handout	CO1
Lecture 19	Class Test 2		
Lecture 20-21	Strategy	Handout	CO1, CO2
Lecture 22-23	Disruption	Handout	CO2

Class No.	Topics	References	Corresponding CO(s)
Lecture 24	Class Test 4		
Lecture 25-26	Marketing	Handout	CO4
Lecture 27-28	Entrepreneurship	Handout	CO2

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least four class tests will be administered. Best three of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

#### 13. Textbook

- Career Development and Planning- A Comprehensive Approach, Second Edition, Authors: Robert C. Reardon, Janet G. Lenz, James P. Sampson, and Gary W. Peterson.
- Engineering Ethics Concepts and Cases, Charles E. Harris, Michael S. Pritchard, Michael J. Rabins
- Effective Business Communications, Herta A. Murphy, Herbert W. Hildebrandt, Jane P. Thomas
- Career Planning, Dave Ellis, ED Stupka, Doug Toft

#### 14. References

- Professional Communication in Engineering, H.E. Sales
- Personal Human Resources Management, David A. DeCenzo, Stephen P. Robbins
- Pocket Book of Technical Writing for Engineers and Scientists, Leo Finkelstein
- Canadian Professional: Engineering Practice and Ethics, Gordon C. Andrews, John D. Kemper
- Career Counseling and Development in a Global Economy, Patrica Anderson, Michael Vandehey

## 20.39 Description of Course CE 410

### SECTION A: General Information

- 1. Course Title Building Design Sessional
- 2. Type of Course Structural Engineering
- 3. Offered to Civil Engineering
- **4.** Pre-requisite Course(s) None

### **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Analysis and design of low-rise RC moment frame buildings for wind and low seismic application; multi-storied RC buildings with shear wall and mat foundation for wind and high seismic application; reinforcement design and detailing at joints.

- **6.** Course Objectives
  - To enable student to design of low-rise RC moment frame buildings for wind and low seismic load
  - To enable student to design multi-storied RC buildings with shear wall and mat foundation for wind and high seismic application.
  - To familiarize with reinforcement design and detailing at joints.

### 7. Knowledge required

Preliminary knowledge in concrete structures

### 8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1		PO (a)	C1	Lectures, Class participation	Class test, final examination
	<i>identify</i> the structural systems of RC buildings.				
2	<i>define</i> the applicable structural systems and load cases.	PO (a)	C1	Lectures, Class participation	Class test, final examination
3	<i>analyse</i> the components of RC buildings.	PO (b)	C4	Lectures, Class participation	Class test, final examination
4	design the components of RC buildings.	PO (c)	C6	Lectures, Class participation	Class test, final examination
5	<i>compare</i> the designed components with software results.	PO (e)	C5	Lectures, Class participation	Class test, final examination

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$																			
CO-2				$\checkmark$																
CO-3		$\checkmark$		$\checkmark$																
CO-4					$\checkmark$															
CO-5						$\checkmark$														

**10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction to the features of a six (6) storied RC framed building, Building geometry and loads,	Handout	CO1
	Preliminary size determination of overhead and		
	underground water tanks, determination load for overhead water tank, Preliminary estimation of		
	beam and column sizes based on gravity loads		
Lecture 2	Slab design of a typical floor; Analysis, design calculation, and detailing of slab	Handout	CO1, CO3, CO4

Lecture 3 Lecture 4	Determination of UDL on beams due to dead and live load using the contributory area method [Write individually W _{DL} ; W _{LL} on beam], Wind and earthquake load calculation, FE model development in ETABS using frame elements only, Application of gravity and lateral nodal loads, Applying supports and boundary conditions, FE Analysis of the model for gravity and lateral loads Determination of axial force, shear force, and moments due to gravity and lateral loads (individual load case) for selected frames,	Handout Handout	CO1, CO2, CO5
Lecture 5	Verification of gravity and lateral loads against manual calculation, Load combination (SDC C), Deflection and serviceability limits check Design of beam and column, Design of footings	Handout	CO2, CO4
Lecture 6	Mid Quiz and Viva		
Lecture 7	UGWT and OHWT	Handout	CO1, CO4
Lecture 8	IMRFS -slab model -EQ and Wind model automatic -Stiffness modifier and automatic load combination - Serviceability check (Torsional irregularity)	Handout	CO1, CO2, CO3
Lecture 9	SDC C design. - beam, column design	Handout	CO4, CO5
Lecture 10	Shear wall for IMRF buildings	Handout	CO1, CO2
Lecture 11	SDC D	Handout	CO1, CO2, CO3
Lecture 12	Slab and Mat foundation design.	Handout	CO4, CO5
Lecture 13	Final Quiz and Viva		

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least three class tests will be administered. Best two of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Assessment and Report	50%
Quiz and Viva	40%

### 13. Textbook

- 1. Design of concrete structures Aurthur H. Nilson, David Darwin, Charles W. Dolan
- 2. Structural concrete theory and design Hassoun, Al-Manaseer
- 14. References
  - 1. 1. Lecture Notes on CE 410.
  - 2. 2. BNBC 2020.

## 20.40 Description of Course CE 411

### **SECTION A: General Information**

- 1. Course Title CE411: Analysis of Indeterminate Structures, 3.00 Cr.hr.
- 2. Type of Course
- 3. Offered to

Structural Engineering

- **Civil Engineering**
- CE 311 4. Pre-requisite Course(s)

### **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Stiffness properties of beam elements; Moment distribution and flexibility/consistent deformation approaches in solving statically indeterminate structures e.g., beams, frames and trusses; matrix stiffness method in analysing statically indeterminate beams, plane frames, grids and trusses subject to loads, temperature changes, support settlements etc.; computer application oriented direct stiffness method; influence lines of statically indeterminate structures.

- 6. Course Objectives
  - To introduce different methods to solve the problems associated with indeterminate structures
  - To enable student to draw influence lines of statically indeterminate structures
  - To solve the problems related to the temperature changes, support settlements in statically • indeterminate structures

### 7. Knowledge required

Basic knowledge in structural analysis, engineering and solid mechanics.

**8.** Course Outcomes

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>Define</i> and <i>comprehend</i> the stiffness and flexibility parameters of prismatic beam and truss elements, fixed end moments for beam elements.	PO(a) PO(b)	C2	Lectures, Class participation	final examination
2	<i>Apply</i> principles of moment distribution method to <i>analyze</i> statically indeterminate beams and plane frames subject to various kinds of loadings and support movements.	PO(a) PO(b)	C4	Lectures, Class participation	Class test, final examination
3	<i>Apply</i> principles of matrix flexibility method to <i>analyze</i> statically indeterminate plane frames and trusses subject to various kinds of loadings.	PO(a) PO(b)	C4	Lectures, Class participation	Class test, final examination
4	<i>Apply</i> principles of matrix stiffness method to <i>analyze</i> statically indeterminate beams, plane frames, plane grids and trusses subject to various kinds of loadings and support movements.	PO(a) PO(b)	C4	Lectures, Class participation	Class test, final examination
5	<i>Comprehend</i> and <i>apply</i> principles of direct stiffness method to <i>build</i> the element stiffness matrix and <i>construct</i> the global stiffnes matrix and to <i>analyze</i>	PO(a) PO(b)	C4	Lectures, Class participation	final examination

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
	beams, frames and trusses subject to loads and support movements.				
6	<i>determine</i> and draw qualitative and quantitative influence line diagrams of statically indeterminate beams and frames.	PO(a) PO(b)	C4	Lectures, Class participation	Class test, final examination

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

## 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$	$\checkmark$																		
CO-2		$\checkmark$	$\checkmark$	$\checkmark$																
CO-3		$\checkmark$	$\checkmark$	$\checkmark$																
CO-4		$\checkmark$	$\checkmark$	$\checkmark$																
CO-5		$\checkmark$	$\checkmark$	$\checkmark$																
CO-6				$\checkmark$																

**10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction to properties and features of statically indeterminate structures. Determination of stability and degree of indeterminacy of beams, frames and trusses	Handout	CO1
Lecture 2-3	Introduction to stiffness characteristics of prismatic beam element, derivation of stiffness parameters of prismatic beam element for end rotation and displacement, fixed end moments of beam elements.	Handout	CO1
Lecture 4	Relation between stiffness properties and nodal deformation of beam/frame elements.	Handout	CO4
Lecture 5	Introduction to degrees of freedoms of beams and plane frames.	Handout	CO4
Lecture 6-7	Analysis of multi-span continuous beams using stiffness method and drawing shear and moment diagrams and qualitative deflected shapes	Handout	CO4
Lecture 8-10	Analysis of plane non-sway and sway frames using stiffness method.	Handout	CO4
Lecture 11	Class Test (stiffness method).		CO4
Lecture 12	Analysis of beams/frames with support settlement (stiffness method).	Handout	CO4
Lecture 13-14	Analysis of plane grids using stiffness method.	Handout	CO4
Lecture 15-16	Formulation of stiffness matrix of a plane truss element; Analysis of plane trusses using stiffness method.	Handout	CO4

Class No.	Topics	References	Corresponding CO(s)
Lecture 17	Formalization of stiffness method of structural analysis	Handout	CO5
Lecture 18-19	Development and application of direct stiffness method in solving beams and trusses	Handout	CO5
Lecture 20	Principle of Superposition and Idealization of structure; Introduction to Force Method of Analysis of indeterminate structures (Method of Consistent Deformation, Matrix Flexibility Method).	Handout	CO3
Lecture 21-23	Comparison between internal and external release systems in beam problems; Analysis of prismatic indeterminate beams in Flexibility Method.	Handout	CO3
Lecture 24	Class Test (Flexibility Method).		CO3
Lecture 25	Analysis of plane frames in Flexibility Method	Handout	CO3
Lecture 27	Analysis of indeterminate truss in Flexibility Method	Handout	CO3
Lecture 28	Concept of moment distribution at a joint; Applicability of moment-distribution method for solving indeterminate beams and frames; understanding distribution factor and carry over factors.	Handout	CO2
Lecture 29-30	Analysis of statically indeterminate beams using moment-distribution method and drawing shear force and bending moment diagrams.	Handout	CO2
Lecture 31	Analysis of statically indeterminate non-sway frames using moment-distribution method and drawing shear force and bending moment diagrams.	Handout	CO2
Lecture 32	Class Test (moment distribution method)		CO2
Lecture 33-34	Analysis of statically indeterminate sway frames using moment-distribution method	Handout	CO2
Lecture 35	Introduction to influence lines of indeterminate beams, frames and trusses, Muller-Breslau principle of drawings influence lines.		CO6
Lecture 36-37	Qualitative influence lines for beam and frames using Muller-Breslau principle.	Handout	CO6
Lecture 38	Class Test (influence lines)		CO6
Lecture 39-41	Quantitative determination of influence lines of beams.	Handout	CO6
Lecture 42	General concluding discussion.		

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least three class tests will be administered. Best two of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

### 12. Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

13. Textbooks

- 1. Structural Analysis, R. C. Hibbeler, 8th edition, Prentice Hall, New York, USA, 2010.
- 2. Structural Analysis, Aslam Kassimali, 4th edition, Cengage Learning, Stamford, USA, 2012.

### 14. References

- 1. **Elementary Structural Analysis,** C H Norris, J B Wilbur, and S Utku, 3rd Edition, McGraw-Hill Book Co, Singapore, 1977.
- 2. Elements of Structural Analysis, N C Sinha, New Central Book Agency, New Delhi, India, 2011
- 3. Advanced Methods of Structural Analysis, I A Karnovsky and O Lebed, Springer New York, 2010

## 20.41 Description of Course CE 413

### **SECTION A: General Information**

1.	Course Title	Introduction to Steel-Concrete Composite Structures
2.	Type of Course	Structural Engineering
3.	Offered to	Civil Engineering
4.	Pre-requisite Course(s)	None

## **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Introduction to composite structures, advantages of composite construction; behaviour of different types of composite columns, axial load capacity and interaction diagram for composite columns. Composite floor system: details of composite deck and shear connectors.

Elastic and plastic analysis of composite beams; design of composite beams for serviceability and strength limit states.

- 6. Course Objectives
  - To familiarize the students with different types of steel-concrete composite members, their advantages and structural behaviour
  - To enable the students to calculate the axial capacity and interaction diagram of composite columns
  - To introduce various components and details of composite floor system
  - To familiarize students with the design guidelines of composite beams
  - To solve problems related to elastic and plastic analysis of composite beams
- 7. Knowledge required

Preliminary knowledge in steel and concrete structures

8. Course Outcomes

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>Understand</i> the definition, types, advantages and behaviour of steel-concrete composite members	PO(a)	C1	Lectures, Class participation	Class test, final examination
2	<i>Determine</i> the axial load capacity and load moment	PO(a) PO(b) PO(d)	C4, C5	Lectures, Class participation	Class test, final examination

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
	interaction diagram of different types of composite columns				
3	<i>Evaluate</i> the elastic section properties and ultimate capacity of composite beams for various levels of composite interaction	PO(a) PO(b) PO(d)	C4, C6	Lectures, Class participation	Class test, final examination
4	<i>Design</i> of composite members (floor system, beams and columns)	PO(b) PO(d)	C1, C3, C4	Lectures, Class participation	Class test, final examination

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

## 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$																			
CO-2		$\checkmark$	$\checkmark$																	
CO-3			$\checkmark$	$\checkmark$																
CO-4				$\checkmark$	$\checkmark$															

#### 10. Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction and Advantages	Handout	CO1
Lecture 2	Behaviour and design considerations of fully encased composite (FEC) columns	Handout	CO1
Lecture 3	Prediction of axial compressive and tensile load capacity of fully encased composite (FEC) columns	Handout	CO2
Lecture 4	Behaviour and design considerations of concrete filled steel tubular columns (CFST) columns	Handout	CO1
Lecture 5	Prediction of axial compressive and tensile load capacity of concrete filled steel tubular columns (CFST) columns	Handout	CO2
Lecture 6	Class Test-1 (Syllabus: Lecture 2 to 5)		
Lecture 7	Behaviour, design considerations and Prediction of axial load capacity of PEC columns	Handout	CO1 CO2
Lecture 8-10	Formulation of Interaction diagram for composite columns using plastic stress distribution method and interaction equation method. Comparison between the two methods.	Handout	CO1 CO2

Class No.	Topics	References	Corresponding CO(s)
Lecture 11-14	Solving problems on Interaction diagram for different types of composite column sections (Assignments are given on this topic)	Handout	CO2
Lecture 15-18	Composite floor system: Components, advantages over conventional RC and steel only construction, design guidelines, construction methods (shored versus unshored construction) and construction sequence.	Handout	CO1
Lecture 19-20	Composite beams: Behaviour of full and partially composite beams, elastic and plastic analysis of composite beams with and without formed steel deck	Handout	CO1
Lecture 21	Class Test-2 (Syllabus: Lecture 15- to 20)		
Lecture 22-24	Shear connectors: purpose of shear connectors, types of connectors, shear capacity and design guidelines for steel headed stud connectors	Handout	CO1
Lecture 25-26	Solving problems for analysis and design of full and partial composite beams for serviceability and ultimate limit conditions	Handout	CO2
Lecture 27	Class Test-3 (Syllabus: Lecture 22 to 26)		
Lecture 28	Review Class		

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least three class tests will be administered. Best two of them will be counted towards • grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following • the guideline of academic Council.
- **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

#### 13. Textbook

- 1. Elementary Behavour of Steel and Concrete Composite Structures, Deric J. Oehlers and Mark A. Bradfrod
- 2. Steel Design, Fifth edition, William T. Segui

#### 14. References

- 1. Steel Construction Manual, American Institute for Steel Construction (AISC 2010)
- 2. Composite Structures of Steel and Concrete, Author: R.P. Johnson

### 20.42 Description of Course CE 415

### **PART A: General Information**

**1.** Course Title

# **Prestressed Concrete**

- 2. Type of Course Structural Engineering **Civil Engineering**
- **3.** Offered to
- **4.** Pre-requisite Course(s) None

## **PART B: Course Details**

5. Course Content (As approved by the Academic Council)

Prestressed Concrete: concepts of prestressing; materials; anchorage systems; loss of prestress; analysis of sections for flexure, shear, bond and bearing; analysis of end block and composite sections; beam deflections; cable layout; partial prestress.

Design of prestressed concrete beams for simple and continuous spans; ideas about use of A ASHTO – PCI sections for standard spans; design considerations for prestressed concrete pipes, piles, poles and railway sleepers.

- 6. Course Objectives
  - To introduce application and different methods of prestressing.
  - To enable students to analyse flexure, shear, bond and bearing of prestressed concrete.
  - To design prestressed concrete beams
- 7. Knowledge required

Preliminary knowledge in concrete structures

8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>describe</i> the concepts of prestressed concrete including prestressing, pre- tensioning and post-tensioning, optimal utilization of high strength materials, anchorage systems and loss of prestress	PO(a)	Cl	Lectures, Class participation	Class test, final examination
2	<i>analyze</i> prestressed sections, end blocks and composite sections for flexure, shear, bond and bearing stress	PO(b)	C4	Lectures, Class participation	Class test, final examination
3	<i>calculate</i> beam deflections at different sections under various loading conditions	PO(b)	C4	Lectures, Class participation	Class test, final examination
4	<i>design</i> prestressed concrete beams for simple and continuous spans	PO(c)	C3	Lectures, Class participation	Class test, final examination
5	<i>explain</i> ideas about use of AASHTO – PCI sections for standard spans	PO(a)	C2	Lectures, Class participation	Class test, final examination
6	<i>discuss</i> design considerations for prestressed concrete pipes, piles, poles and railway sleepers	PO(a) PO(c)	C2	Lectures, Class participation	Class test, final examination

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6:

Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$																			
CO-2	~	$\checkmark$																		

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-3		$\checkmark$	$\checkmark$																	
CO-4	~				$\checkmark$															
CO-5				$\checkmark$																
CO-6	~				$\checkmark$															

#### 10. Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction and Advantages	Handout	CO1
Lecture 2	Anchorage system	Handout	CO1
Lecture 3-4	Loss of prestress	Handout	CO1
Lecture 5	CT-1		
Lecture 6-7	Analysis of sections for flexure	Handout	CO2
Lecture 8-9	Analysis of sections for shear	Handout	CO2
Lecture 10	Analysis of sections for bond and bearing	Handout	CO2
Lecture 11	Analysis of end block and composite sections	Handout	CO2
Lecture 12- 13	Beam deflections	Handout	CO3
Lecture 14	CT-2		
Lecture 15	Cable layout	Handout	CO1
Lecture 16	Partial prestress	Handout	CO1 CO2
Lecture 17- 19	Design of prestressed concrete beams for simple and continuous spans	Handout	CO4
Lecture 20	CT-3		
Lecture 21- 22	Ideas about the use of AASHTO – PCI sections for standard spans	Handout	CO5
Lecture 23- 24	Design considerations for prestressed concrete pipes, piles, poles, and railway sleepers	Handout	CO6

#### **11.** Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least three class tests will be administered. Best two of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

### 13. Textbook

3. Design of Prestressed Concrete Structures, Lin Tsung-Yi

14. References

Not applicable

# 20.43 Description of Course CE 419 SECTION A: General Information

1. Course Title

## Introduction to Finite Element Method

- 2. Type of Course Structural Engineering
- **3.** Offered to
- Civil Engineering (Optional)
- 4. Pre-requisite Course(s) None

## **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Introduction to finite element method as applied to stress analysis problems; basic equations in elasticity, matrix displacement formulation, element shapes, nodes, nodal unknowns and coordinate system, shape functions, strain displacement matrix, methods for assembling stiffness equations e.g., direct approach, Galerkin's method, virtual work method, principle of minimum potential energy; introduction to isoparametric formulation; discritization of a structure and mesh refinement, one dimensional stress-deformation and two dimensional plane stress and plane strain analysis of stress -deformation problems; numerical integration and computer application.

- **6.** Course Objectives
  - To introduce finite element method in stress analysis
  - To introduce different methods to formulate element stiffness equations and form global stiffness matrix suitable for numerical computation
  - To enable student to form strain displacement matrices
  - To solve the stress-deformation problems in different discretization methods by employing appropriate constitutive laws and numerical integration strategies to reach efficient but acceptable solutions in terms of desirable accuracy utilizing limited storage and computational resources.

### 7. Knowledge required

Preliminary knowledge in numerical methods.

8. Course Outcomes

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>recall</i> the formulation of differential equations in describing a physical phenomenon.	PO(a)	C1	Lectures, Class participation	Class test, final examination
2	<i>review</i> the use of constitutive relations and methods of idealizations for representing the linear and non-linear stress-strain responses from a material in addressing a practical three-dimensional structural analysis problem.	PO(b)	C2	Lectures, Class participation	Class test, final examination
3	<i>apply</i> the fundamentals of analysis of statically indeterminate structures by matrix method for stress analysis introducing the concept of shape functions, strain displacement matrix and methods for assembling stiffness equations using different approaches.	PO(b)	C3	Lectures, Class participation	Class test, final examination
4	<i>demonstrate</i> the advantages of use of shape functions in deriving stiffness equations for 1d and 2d elements.	PO(a)	C3	Lectures, Class participation	Class test, final examination
5	<i>differentiate</i> the advantages (and disadvantages) of isoperimetric formulations.	PO(a) PO(b)	C4	Lectures, Class participation	Class test, final examination

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
6	<i>criticize</i> the advantages (and disadvantages) between different discretization methods, solution methods and numerical integration methods for reaching a solution of a statically indeterminate structural engineering problem in terms of computation time and storage requirements.	PO(a) PO(b)	C5	Lectures, Class participation	Class test, final examination
7	<i>plan</i> an optimal solution strategy for a statically indeterminate structural engineering problem in terms of computation time and storage requirements.	PO(b)	C6	Lectures, Class participation	Class test, final examination

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

#### 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$					$\checkmark$			$\checkmark$								
CO-3		$\checkmark$	$\checkmark$	$\checkmark$					$\checkmark$			$\checkmark$								
CO-4		$\checkmark$	$\checkmark$						$\checkmark$			$\checkmark$								
CO-5		$\checkmark$	$\checkmark$						$\checkmark$		$\checkmark$	$\checkmark$								
CO-6		$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					
CO-7		$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$			$\checkmark$					

#### 10. Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction to finite element method, Basic equations in elasticity, stresses in a typical element	Handout	CO1
Lecture 2	Equations of equilibrium, strains, strain, displacement equations, linear constitutive law, Idealizations, plane stress problem, plain strain problem, axisymmetric problem	Handout	CO1, CO2
Lecture 3	Matrix displacement formulation, Element shapes, nodes, nodal unknowns and coordinate systems	Handout	CO1, CO2
Lecture 4	Shape functions for spring and bar element, Strain displacement matrices	Handout	CO2, CO3, CO4
Lecture 5	Class Test 1		
Lecture 6	Shape function for beam element, strain displacement relation, Beam-Column Elements	Handout	CO3, CO4
Lecture 7	Assembling stiffness equations in direct approach, Galerkin's method and virtual work method	Handout	CO4

Class No.	Topics	References	Corresponding CO(s)
Lecture 8	Principle of minimum potential energy; introduction to isoparametric formulation	Handout	CO5
Lecture 9	Class Test 2		
Lecture 10	Discretization of structures and mesh refinement: variational formulation in finite element analysis, finite representation of infinite bodies, numbering system to reduce band width, frontal solution technique	Handout	CO6
Lecture 11	Finite element analysis – bars and trusses: tension bars/columns, two dimensional trusses (plane trusses, three dimensional trusses (space trusses)	Handout	CO6, CO7
Lecture 12	Finite element analysis – plane stress and plane strain problems: Advantages for higher order elements,	Handout	CO6, CO7
Lecture 13	Numerical Integration, Computer Applications	Handout	CO6, CO7
Lecture 14	Class Test 3		

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least three class tests will be administered. Best two of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

#### 12. Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

### 13. Textbook

- 1. Finite Element Analysis, S.S Bhavikanti
- 2. The Finite Element Method: Its Basis and Fundamentals (Sixth Edition), O.C. Zienkiewicz, R.L.Taylor, J.Z. Zhu
- 3. Fundamentals of Finite Element Analysis, David Hutton

None

## 20.44 Description of Course CE 421

## SECTION A: General Information

1.	Course Title	<b>Dynamics of Structures</b>
2.	Type of Course	Structural Engineering (Optional)
3.	Offered to	Civil Engineering

**4.** Pre-requisite Course(s)

### **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Single degree of freedom system, free vibration response; response to harmonic, impulse and general dynamic loading; numerical evaluation of dynamic response; earthquake response of linear system; two degrees of freedom system; response spectrum analysis.

- 6. Course Objectives
  - To introduce single degree of freedom system and two degrees of freedom system
  - To evaluate the dynamic response numerically
  - To familiarize with earthquake response of linear system
  - To solve the problems related to impulse and general dynamic loading
- 7. Knowledge required

Preliminary knowledge in numerical analysis

8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>describe</i> and <i>apply</i> the fundamental concepts of system dynamics with specific focus and application to simple civil/structural engineering problems	PO(a)	C2, C3	Lectures, Class participation	Class test, final examination
2	<i>apply</i> the laws of dynamics to establish mathematical models of single degree of freedom (sdof) and two-dof dynamic problems and evaluate their free vibration characteristics	PO(b)	C3, C4	Lectures, Class participation	Class test, final examination
3	<i>analyze</i> the dynamic response of a sdof system to various types of dynamic loadings and other important parameters for structural design	PO(b)	C4	Lectures, Class participation	Class test, final examination
4	<i>apply</i> numerical methods to evaluate the response of a sdof systems subjected to general dynamic loadings	PO(b)	C3, C4	Lectures, Class participation	Class test, final examination
5	<i>apply</i> structural dynamics theory to earthquake analysis, response, and design of structures	PO(b)	C3	Lectures, Class participation	Class test, final examination

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9.	Mapping of Kn	owledge Profile.	Complex H	Engineering	Problem Solving and	Complex Engineering Activitie	es
	The pring of the	o mieage i ronne,	e o inpresi i		i i o o i o i i ing ana		

				-			-	-		-			-		-		-	-		
COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$	$\checkmark$		$\checkmark$																
CO-2		$\checkmark$	$\checkmark$	$\checkmark$																
CO-3		$\checkmark$		$\checkmark$																
CO-4		$\checkmark$		$\checkmark$																
CO-5		$\checkmark$		$\checkmark$																

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction, Importance of Structural Dynamics, Different types of dynamic loads, Difference between dynamic and static problems, Different mechanical models, fundamental objective of structural dynamics analysis; A Dynamic System: single-degree-of-freedom system (SDOF), components of the basic dynamic system, mass-spring-damper system, Formulation of Equation of Motion (EOM), equation of motion to earthquake excitation. Methods of solution of the differential	Handout	CO1
Lecture 2	equation. Free vibration of SDOF systems (undamped), Classical solution of EOM, Problems on undamped free vibration response.	Handout	CO1, CO2
Lecture 3	Free vibration of damped SDOF systems, Classical solution of EOM, under-damped free vibration responses, Logarithmic decrement, Problems on under-damped free vibration responses.	Handout	CO1, CO2
Lecture 4	Class Test-1. Forced vibration (Harmonic) of undamped SDOF systems, Classical solution of EOM, Steady state vibration, Dynamic magnification factor (DMF).	Handout	
Lecture 5	Problems on forced vibration responses due to harmonic excitation. Forced vibration (Harmonic) of damped SDOF systems, Classical solution of EOM, Steady state vibration, DMF vs Frequency ratio.	Handout	CO2, CO3
Lecture 6	Problems on forced vibration responses (damped SDOF) due to harmonic excitation. Evaluation of damping in SDOF system.	Handout	CO2, CO3
Lecture 7	Response of SDOF system to Periodic Loading. Fourier Series Expression, Response to the Fourier Series Loading. Problems on response of SDOF system to Periodic Loading.	Handout	CO2, CO3
Lecture 8	Class Test-2. Response of SDOF system to Non-periodic Loading (Ideal Step input, Rectangular Pulse loading, Ramp Loading)	Handout	
Lecture 9	Response of SDOF system to short duration Impulse, Unit Impulse Response Function, Response of SDOF systems to general dynamic excitation: Convolutional Integral Method/Duhamel Integral Method) Problems on response of SDOF system to non-periodic Loadings.	Handout	CO2, CO4
Lecture 10	Response to general dynamic loading: Numerical Method, Integration Method: Constant average acceleration method, linearly varying method, Newmark's Beta Method. Problems on response of SDOF system to general dynamic loading by Newmark's Beta method.	Handout	CO2, CO4
Lecture 11	Class Test-3.	Handout	

Class No.	Topics	References	Corresponding CO(s)
	Earthquake Response of a linear system, Equivalent static force, Ground acceleration time history, Response Spectra Concept.		
Lecture 12	Deformation, pseudo-velocity and pseudo-acceleration Response Spectra, Combined D-V-A Response spectra. Problems on Earthquake response of a linear system using Response spectra.	Handout	CO4, CO5
Lecture 13	Two Degree of Freedom System, Formulation of EOM of Mass-spring-damper system, 2-DOF shear frame building system, Matrix formulation of EOM. Eigenvalue analysis of 2-DOF freedom system, Natural Vibration frequencies and mode shapes.	Handout	CO4, CO5
Lecture 14	Problem of Eigen-value analysis and determination of natural frequencies and mode shapes. Review of the course.	Handout	CO4, CO5

- Class Participation: Class participation and attendance will be recorded in every class. •
- Class Test: At least three class tests will be administered. Best two of them will be counted towards • grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following • the guideline of academic Council.

#### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

#### 13. Textbook

- 1. Dynamics of Structures-Theory and applications to earthquake engineering Anil K. Chopra, 5th edition, Pearson Education, Inc., Prentice Hall.
- 2. Dynamics of Structures, Ray W. Clough, Joseph Penzien, 3rd edition, Computers & Structures, Inc., Berkley, USA

#### **14.** References

1. Dynamics of Structures, J.L. Humar, 2nd edition, A.A. Balkema Publisher.

# 20.45 Description of Course CE 433

# **SECTION A: General Information**

- 1. Course Title Solid and Hazardous Waste Management 2. Type of Course
  - Environmental Engineering (Optional)

**Civil Engineering** 

- **3.** Offered to
- **4.** Pre-requisite Course(s) None

### **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Solid Waste Management: sources and types of solid wastes; physical and chemical properties of solid wastes; solid waste generation; on-site handling, storage and processing; collection of solid wastes; transfer stations and transport; ultimate disposal methods; resources and energy recovery options; 3R strategy; Solid waste management policy in Bangladesh.

Hazardous Waste Management: identification, sources and characteristics of hazardous wastes; hospital waste management practices; legal aspects; auditing and prevention; methods of treatment and disposal – physical, chemical, biological and thermal treatment; stabilization and solidification, engineering storage, incineration, landfill and deep burial.

6. Course Objectives

Educate students on:

- a. Collection, characterization, processing, transport and disposal of Municipal Solid and Hazardous Wastes.
- b. Design of the MSW collection system.
- c. Optimization of the cost of collection and transport system for effective management of solid and hazardous wastes.
- d. Operation and management of resource and energy recovery facilities.
- 7. Knowledge required

Preliminary knowledge in environmental engineering

8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>describe</i> the physical and chemical properties, ultimate disposal methods of <i>solid and hazardous</i> <i>wastes, and decomposition of solid</i> <i>wastes</i>	PO(a)	C2	Lectures, Class participation	Class test, final examination
2	<i>estimate</i> generation rates of solid and hazardous wastes and the quantity of leachate and gas generation in <i>a landfill</i>	PO(a) PO(b)	C5	Lectures, Class participation	Class test, final examination
3	<i>plan and design</i> the solid and hazardous wastes collection systems and sanitary landfills <i>based</i> <i>on the type required</i>	PO(a) PO(b) PO(c)	C6	Lectures, Class participation	Class test, final examination
4	<i>assess</i> the suitability of different treatment and disposal options of solid and hazardous wastes and <i>leachate</i>	PO(a) PO(b) PO(c) PO(f)	C3	Lectures, Class participation	Class test, final examination
5	select appropriate type of solid and hazardous waste management methods	PO(a) PO(b) PO(c) PO(f)	C4	Lectures, Class participation	Class test, final examination

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

# 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$			$\checkmark$																
CO-2			$\checkmark$																	
CO-3			$\checkmark$	$\checkmark$	$\checkmark$															
CO-4				$\checkmark$	$\checkmark$		$\checkmark$													
CO-5				$\checkmark$	$\checkmark$		$\checkmark$													

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction to solid waste scenario of Bangladesh; identification of sources and classification of different components.	Handout	CO1
Lecture 2	Physical properties of solid waste; methods of assessing physical properties of solid waste	Handout	CO1
Lecture 3-4	Chemical properties of solid waste; methods of assessing chemical properties of solid waste, estimating the chemical composition of the organic fraction of solid waste	Handout	CO1
Lecture 5	Biological properties of solid waste, analysis of biodegradability of solid waste; assessing the energy value of solid waste	Handout	CO1
Lecture 6-7	Mass balance analysis of resources and generated industrial wastes; assessment of solid waste generation rate of a community; on-site handling methods, sorting and storage provisions	Handout	CO2
Lecture 8	Description of solid waste collection systems, mathematical models for assessing the different methods of collection, estimating the collection vehicle capacity	Handout	CO3
Lecture 9	Class test-1		
Lecture 10	Description of transfer and transport systems, comparison of collection systems and transfer & transport systems based on cost	Handout	CO3
Lecture 11- 12	Waste load allocation among the transfer stations and disposal sites; types of MRFs, units of operations used at MRFs, equipment used for size reduction at MRFs, energy recovery from MSW	Handout	CO3
Lecture 13	Review	Handout	
Lecture 14	Class test-2	Handout	
Lecture 15	Ultimate disposal methods of solid wastes, Solid Waste Disposal in Low-Income Countries;	Handout	CO1
Lecture 16	Landfill Development Levels; Sanitary Landfill and Landfilling Methods; Advantages and disadvantages of sanitary landfill	Handout	CO1 CO4
Lecture 17	Planning and Design of a Sanitary Landfill; Site Selection; Operational Manual; Layout plan of a sanitary landfill	Handout	CO3
Lecture 18	Decomposition of Solid Wastes in Landfills; Characteristics of Leachate; Leachate Migration	Handout	CO2

Class No.	Topics	References	Corresponding CO(s)
Lecture 19	Leachate Quantities, Leachate Control, Leachate	Handout	CO2
	Collection System,		CO3
Lecture 20	Leachate Treatment; Leachate Recirculation;	Handout	CO4
	Final Disposal of Leachate; Stormwater		
	Management		
Lecture 21	Environmental impacts of landfill gases;	Handout	CO2
	Composition of Landfill Gas; Stages of Landfill		
	Gas Generation		
Lecture 22	Quantity of Landfill Gas Generation; Control of	Handout	CO2
	Gas Movement;		
Lecture 23	Gas Recovery; Resource Recovery from Solid	Handout	CO1
	Waste; Recycling Process in Bangladesh		
Lecture 24	Hazardous Wastes; Human Exposure Pathways	Handout	CO4
	for Hazardous Wastes; Hazardous Wastes		
	Screening; Review of Treatment and Disposal		
	Options for Hazardous Wastes		
Lecture 25	Advantages, Disadvantages and Limitations of	Handout	CO4
	Physical, chemical, thermal and Biological		CO5
	Treatment Processes of hazardous wastes; Landfill		
	for final Disposal of Hazardous Wastes		
Lecture 26	Classification of Hospital Wastes; Collection,	Handout	CO1
	storage and Transportation; Treatment and		
	Disposal		
Lecture 27	Review	Handout	
Lecture 28	Class test-3		

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least three class tests will be administered. Best two of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the term following the guideline of Academic Council.

#### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

13. Textbook

- 1. Integrated Solid Waste Management : Engineering Principles And Management Issues by George Tchobanoglous, Hilary Theisen, Samuel Vigil
- 2. Hazardous Waste Management by Charles A. Wentz
- 3. Solid Waste Engineering by P. A. Vesilind, W. Worrell & D. Reinhart
- 4. Text Book of Solid Wastes Management by I. H. Khan & N. Ahsan
- 5. Environmental Engineering by H. S. Peavy, D. R. Rowe & G. Tchobanoglous
- 6. Water Supply & Sanitation by M. F. Ahmed & M. M. Rahman

14. References

1. Environmental Engineering by A. P. Sincero & G. A. Sincero

# 20.46 Description of Course CE 435

### SECTION A: General Information

- 1. Course Title
- **2.** Type of Course
- 3. Offered to

## **Environmental Pollution Management**

Environmental Engineering (Optional) Civil Engineering None

**4.** Pre-requisite Course(s)

## **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Water pollution: sources and types of pollutants, emerging contaminants; waste assimilation capacity of streams; dissolved oxygen modelling; ecological balance of streams; industrial pollution; lake pollution and eutrophication; heavy metal contamination; groundwater pollution; marine pollution; water quality problems in Bangladesh; pollution control measures: water quality monitoring and management.

Air pollution: sources and types of pollutants; effects of various pollutants on human health, materials and plants; air pollution meteorology; introduction to air quality models; air pollution monitoring and control measures; global warming, climate change and ozone layer depletion; acid rain.

Noise pollution and control measures.

- 6. Course Objectives
  - To synthesize the sources and nature of pollution e.g., air pollution and water pollution
  - To introduce problems associated with environmental pollution
  - To familiarize with pollution control measures
- 7. Knowledge required

Preliminary knowledge in environmental engineering

8. Course Outcomes

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>classify</i> sources of air and water pollution and <i>describe</i> their formation and effects	PO(a)	C2	Lectures, Class participation	Class test, final examination
2	<i>apply</i> simple dissolved oxygen (DO) analytical model to assess the effect of organic loading on DO and simple models for pollutant transport through subsurface	PO(b)	C3	Lectures, Class participation	Class test, final examination
3	<i>describe</i> groundwater quality problems in Bangladesh and their remedial measures	PO(b) PO(f) PO(g)	C2	Lectures, Class participation	Class test, final examination
4	<i>analyze</i> the effects of meteorology on air quality and <i>apply</i> Gaussian plume model to assess effects of emissions from point and line sources on air quality	PO(b)	C4	Lectures, Class participation	Class test, final examination
5	<i>identify</i> and <i>describe</i> control measures for reduction of pollutant load from pollution	PO(a) PO(f) PO(g)	C4	Lectures, Class participation	Class test, final examination

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
	sources of water and air pollution				
6	<i>describe</i> the role of GHGs and particulates in regulating climate change/global warming	PO(a)	C2	Lectures, Class participation	Class test, final examination

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

#### 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

Cos	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$																			
CO-2			$\checkmark$																	
CO-3	$\checkmark$			$\checkmark$			$\checkmark$													
CO-4	$\checkmark$		$\checkmark$																	
CO-5				$\checkmark$			$\checkmark$													
CO-6				$\checkmark$																

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Water Pollution and its effect: Global and Bangladesh Perspective	Handout	CO1
Lecture 2	Water pollution: sources and types of pollutants,	Handout, Masters	CO1
Lecture 3	Waste assimilation capacity of streams, control of surface water pollution	Handout, Masters	CO1
Lecture 4-5	Dissolved oxygen modeling; ecological balance of streams	Handout, Masters	CO2
Lecture 6	Class Test 1		
Lecture 7-8	Lake water quality, detergent pollution and eutrophication	Handout, Masters	CO1
Lecture 9-10	Groundwater quality, pollutant fate and transport through ground water, control of ground water pollution	Handout, Masters	CO1 CO3 CO5
Lecture 11	Water quality in Bangladesh: contamination and control of pollution	Handout	CO3 CO5
Lecture 12	Class Test 2		
Lecture 13- 15	Air pollution: sources and types of pollutants	Handout	CO1
Lecture 16- 18	Formation and effects of various pollutants on human health, materials and plants;	Handout	CO1

Class No.	Topics	References	Corresponding CO(s)
Lecture 19	Class Test-3		
Lecture 20- 21	Air pollution meteorology;	Handout	CO4
Lecture 22	Global warming, climate change and ozone layer depletion	Handout	CO6
Lecture 23- 24	Air pollution monitoring and control measures	Handout	CO4 CO5
Lecture 25- 27	Introduction to air quality models; application of Gaussian Plume model for point and line sources of pollution.	Handout	CO4
Lecture 28	Class Test-4		

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least three class tests will be administered. Best two of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

#### 12. Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

13. Textbook

- 1. **Introduction to Environmental Engineering and Science,** Third edition, by Gilbert M. Masters and Wendell P. Ela, Pearson Prentice Hall.
- 2. Class Lecture Handout
- 14. References

2. Type of Course

1. **Introduction to Environmental Engineering**, Fifth edition, by Mackengie L. Davies and David A. Cornwell, Mc Graw Hill Education.

### 20.47 Description of Course CE 437

#### **SECTION A: General Information**

1. Course Title Basic Environmental Management

Environmental Engineering (Optional)

- **3.** Offered to Civil Engineering
- 4. Pre-requisite Course(s) None

### **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Introduction to environmental management; environmental policies, legislative and institutional framework; environmental implication of sectoral development; environmental quality standards; environmental impact assessment of development projects; strategic environmental assessment; environmental auditing; economics of environmental management; case studies.

#### 6. Course Objectives

The objective of the course is to relate environment with development activities and demonstrate the need for sustainable development. The course will emphasize on learning about different environmental and social impacts of development activities, tools to quantify or assess impacts and devising cost-effective and feasible mitigation measures to address the impacts. The role of policies, laws and institutions in the context of environmental management will also be discussed.

#### 7. Knowledge required

Preliminary knowledge in environmental engineering

### 8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>relate</i> environment with development activities and distinguish between development and sustainable development	PO(a) PO(f) PO(g)	C4, A4	Lectures, Class participation	Class test, final examination
2	<i>demonstrate</i> the knowledge of and need for sustainable development and environmental management	PO(a) PO(f) PO(g)	C3	Lectures, Class participation	Class test, final examination
3	<i>assess</i> the environmental impacts of development projects	PO(a) PO(c) PO(f) PO(g)	C5	Lectures, Class participation	Class test, final examination
4	<i>comprehend</i> the role of policy and legislative framework of Bangladesh in environmental management	PO(g)	C2	Lectures, Class participation	Class test, final examination
5	<i>explain</i> the economics of environmental management	PO(a) PO(b) PO(f) PO(g)	C2	Lectures, Class participation	Class test, final examination

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

Cos	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$						$\checkmark$												$\checkmark$	
CO-2	$\checkmark$						$\checkmark$													
CO-3		$\checkmark$					$\checkmark$	$\checkmark$											$\checkmark$	
CO-4							$\checkmark$													
CO-5	$\checkmark$	$\checkmark$					$\checkmark$												$\checkmark$	

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Man - Environment Interactions and Human Carrying Capacity of Earth and Ecological Footprint	Handout	CO1
Lecture 2	Introduction to Environmental Management	Handout	CO1
Lecture 3	Development and Sustainable Development	Handout	CO1
Lecture 4	Goals of Sustainable Development and Business tools to achieve sustainability	Handout	CO1
Lecture 5	MDG, SDG and Delta Plan 2100	Handout	CO1
Lecture 6	Environmental Issues: Global, Regional and Local (Causes, Impacts, Mitigation measures)	Handout	CO2
Lecture 7	Class Test-1, Priorities of Environmental Issues in the context of Bangladesh	Handout	CO2
Lecture 8	Environmental Implications of Sectoral Development: Agricultural, Industrial, Energy Sector	Handout	CO1 CO3
Lecture 9	Environmental Implications of Sectoral Development: Transportation and Communication, Tourism, Infrastructure, Flood control and Drainage	Handout	CO1 CO3
Lecture 10	Environmental Impact Assessment Methodologies	Handout	CO3
Lecture 11- 12	Evaluation of environmental impacts due to specific development projects	Handout	CO3
Lecture 13	Class test-2		
Lecture 14	Review		
Lecture 15	History and context of Environmental legislation in Bangladesh, Features of Bangladesh Environmental Policy 1992 and 2013	Handout	CO4
Lecture 16	Bangladesh Environment Conservation Act 1995, its salient features and its role in environmental management in Bangladesh, environmental clearance procedures for industrial projects	Handout	CO4
Lecture 17	The role of judiciary, civil society and Public interest litigation in environmental management, salient features of the Environment Court Act 2010	Handout	CO4
Lecture 18	Other key environmental legislations (Water Act 2013, Brick Manufacturing and Kiln Act 2013, Hazardous Waste and Ship-breaking Waste Management Rules 2011)	Handout	CO4

Class No.	Topics	References	Corresponding CO(s)
Lecture 19	Guidelines and standards, setting environmental Quality Standards, Salient features Environmental Conservation Rules 1997	Handout	CO4
Lecture 20	Laws Related to Workplace health and safety, international treaties and protocols, review of environmental laws	Handout	CO4
Lecture 21	Class test-3		
Lecture 22	EIA and Project Cycle, IEE and EIA	Handout	CO3
Lecture 23	Environmental Management Plan, Environmental Monitoring	Handout	CO3
Lecture 24	Public Participation in Environmental Decision- making	Handout	CO4
Lecture 25	Case studies in EIA: The Jamuna Multipurpose Bridge Project	Handout	CO3
Lecture 26	Economics of environmental management: willingness-to-pay and opportunity cost, equimarginal principle, socially efficient rate of output	Handout	CO5
Lecture 27	Economics of environmental management: marginal damage function and abatement costs, efficient level of emissions	Handout	CO5
Lecture 28	Class test-4		

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least three class tests will be administered. Best two of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the term following the guideline of Academic Council.

12. Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

13. Textbook

- 1. Environmental Impact Assessment by Larry W. Canter
- 2. Environmental Economics by Field and Olewiler
- 3. Class Lecture Handout

#### 14. References

- 1. Environmental Management for Sustainable Development by C.J. Barrow
- 2. http://cpd.org.bd/wp-content/uploads/2015/10/The-Agenda-of-Sustainable-Development-Goals-Implementation-Challenges-for-Bangladesh-CPD-Debapriya-Bhattacharya.pdf
- 3. https://www.academia.edu/8965675/Analyze_the_Major_Challenges_of_Sustainable_Development_in_Ba ngladesh

- 4. http://www.climatechangecell.org.bd/Documents/climate_change_strategy2009.pdf
- 5. <u>http://www.world-nuclear.org/info/Energy-and-Environment/Environment-and-Health-in-Electricity-Generation/</u>
- 6. GoB (1997), Environmental Conservation Rules 1997, Department of Environment, Ministry of Environment and Forest, Government of the People's Republic of Bangladesh, June 1997.
- 7. GoB (1995), Environment Conservation Act 1995, Department of Environment, Ministry of Environment and Forest, Government of the People's Republic of Bangladesh.
- 8. GoB (1997), EA Guidelines for Industries, Department of Environment, Ministry of Environment and Forest, Government of the People's Republic of Bangladesh, June 1997.
- 9. GoB (2005), SRO No. 220-Rule/2005, Revision of the Environment Conservation Rules 1997, Ministry of Environment and Forest, Government of the People's Republic of Bangladesh, Dhaka.
- 10. "Construction-related environmental impacts of the Jamuna multipurpose bridge project" by ABM Badruzzaman and M Feroze Ahmed (Journal of Civil Engineering, IEB)
- 11. "Environmental impact assessment of Jamuna multipurpose bridge project" by M. Feroze Ahmed and Tanvir Ahmed

### 20.48 Description of Course CE 441 SECTION A: General Information

### **1.** Course Title

- 2. Type of Course
- 3. Offered to

Geotechnical Engineering (Compulsory) Civil Engineering

**Foundation Engineering** 

**4.** Pre-requisite Course(s)

### **SECTION B: Course Details**

- **5.** Course Content (As approved by the Academic Council) Soil investigation techniques; types of foundations; bearing capacity of shallow and deep foundations; settlement and distortion of foundations; design and construction of footings, rafts and piles; slope stability analyses.
- 6. Course Objectives
  - To introduce sub-soil investigation program for various Civil Engineering Projects

None

- To introduce several limit equilibrium methods for stability check and design of slopes
- To enable designing footings, raft and piles foundations.
- 7. Knowledge required

Preliminary knowledge in geotechnical engineering

8. Course Outcomes

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	Plan sub-soil investigation program and prepare sub-soil investigation report for various civil engineering projects	PO(a), PO(d)	C6	Lectures, Class participation	Class test, final examination
2	Analyse an existing slope to check its stability using several limit equilibrium methods & design new earth slopes	PO(b), PO(c)	C4	Lectures, Class participation	Class test, final examination
3	Determine the bearing capacity for shallow and deep foundations for homogeneous or layered soil	PO(b)	C4	Lectures, Class participation	Class test, final examination

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
4	Evaluate the total settlement of a footing or pile group in sand or clay	PO(a), PO(b)	C4	Lectures, Class participation	Class test, final examination
5	Decide on appropriate types of foundation for a structure and design footings, raft or piles foundations	PO(c)	C5, C6	Lectures, Class participation	Class test, final examination

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

Cos	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$		$\checkmark$	$\checkmark$				$\checkmark$												
CO-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-4	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-5					$\checkmark$															

**10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1-7	Soil investigation techniques	Handout, Text Book.	CO-1
Lecture 8-13	Slope stability analyses	Handout, Text Book.	CO-2
Lecture 14-22	Types of foundations; bearing capacity of shallow and deep foundations	Handout, Text Book.	CO-3
Lecture 23-28	Settlement and distortion of foundations	Handout, Text Book.	CO-4
Lecture 29-38	Design and construction of footings, raft and piles	Handout, Text Book.	CO-5
	04 lectures for Class test		

**11.** Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least four class tests will be administered. Best three of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

**12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

### 13. Textbook

- a. Principles of Foundation Engineering -B. M. Das, 9th Edition, January 2018, Cengage Learning
- b. Foundation Engineering -W. E. Hanson, T. H. Thornburn, R. B. Peck, 2nd Edition, January 1991, Wiley
- 14. References
  - *a.* Physical and Geotechnical Properties of Soils -Joseph E. Bowels, 2nd Edition, March 1984, McGraw-Hill
  - b. Geotechnical Engineering: Principles and Practices -Donald P. Coduto, 2nd Edition January 2010, Pearson
  - c. Development in Geotechnical Engineering -B. M. Das, Nagaratnam Sivakugan, 2016-2022, Springer

## 20.49 Description of Course CE 443

### **SECTION A: General Information**

**1.** Course Title

## Earth Retaining Structures

- 2. Type of Course Geotechnical Engineering (Compulsory)
- 3. Offered to

Civil Engineering

4. Pre-requisite Course(s) None

## SECTION B: Course Details

5. Course Content (As approved by the Academic Council)

Foundation of structures subjected to lateral loads; rigid and flexible earth retaining structures; methods of construction: dewatering and slurry-wall construction, braced excavation, sheet piles, cofferdams, caissons.

- 6. Course Objectives
  - To introduce different earth retaining structures along with their importance.
  - To enable applying earth pressure theories for designing earth retaining structures
  - To familiarize with basic principles of construction dewatering.
- 7. Knowledge required
  - Preliminary knowledge in geotechnical engineering
- 8. Course Outcomes

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(- ies)	Assessment Tool(s)
1	Understand basic principles of construction dewatering and slurry trench wall construction	PO(a), PO(c)	C1	Lectures, Class participation	Class test, final examination
2	Apply basic concepts of lateral earth pressure theory for analysis and design of flexible and rigid earth retaining structures	PO(b), PO(c)	C3	Lectures, Class participation	Class test, final examination
3	Analyze shallow and deep foundations subjected to lateral loads	PO(b), PO(c)	C4	Lectures, Class participation	Class test, final examination
4	Analyze and design of cofferdams, caissons and mechanically stabilized walls	PO(b), PO(c)	C4, C5	Lectures, Class participation	Class test, final examination

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

			-			-	-		-			-			-	-		-		
COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
CO-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															
CO-3	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$															
CO-4	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$															

**10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction	Handout, Text Book.	
Lecture 2-4	Methods of construction dewatering	Handout, Text Book.	CO-1
Lecture 5	Slurry-wall construction	Handout, Text Book.	CO-1
Lecture 6-9	Flexible earth retaining structures: sheet piles	Handout, Text Book.	CO-2
Lecture 10-11	Laterally loaded Piles	Handout, Text Book.	CO-3
Lecture 12-13	Foundation of Structures Subjected to Lateral Loads	Handout, Text Book.	CO-3
Lecture 14-17	Rigid and Flexible Earth Retaining Structures	Handout, Text Book.	CO-2
Lecture 18-20	Cofferdams	Handout, Text Book.	CO-4
Lecture 21-22	Mechanically Stabilized Wall	Handout, Text Book.	CO-4
Lecture 23-24	Class test (3 nos.) & course review		

11. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least three class tests will be administered. Best two of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

#### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

13. Textbook

a. Foundation Design -Wayne C. Teng, 13th Edition, February 1992, Prentice-Hall

- b. Foundation Analysis and Design -Joseph E. Bowles, 5th Edition, 1996, McGraw Hill
- c. Earth Pressure and Earth Retaining Structures - Chris R.I. Clayton, 3rd Edition, May 2014, CRC Press
- d. Foundation and Earth Retaining Structures - Muni Budhu, 1st Edition, January 2008, Wiley
- e. Basics of Retaining Wall Design Hugh Brooks, 11th Edition, May 2018, HBA Publications

**Civil Engineering** 

None

### 14. References

Lecture materials and Handouts provided by course teacher

# 20.50 Description of Course CE 445

### SECTION A: General Information

- 1. Course Title Elementary Soil Dynamics
- 2. Type of Course Geotechnical Engineering (Optional)
- 3. Offered to
- **4.** Pre-requisite Course(s)

## **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Elementary vibrations; dynamic properties of soil; seismic response of soils: site effects, site amplification, liquefaction problems, remedial measures and earthquake hazards.

- 6. Course Objectives
  - To introduce basic concepts of soil dynamics and earthquake related problems
  - To demonstrate liquefaction problems and discuss different remedial measures.
  - To enable estimating dynamic properties of soil from experimental data as well as response curve.
- 7. Knowledge required

Preliminary knowledge in geotechnical engineering

8. Course Outcomes

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	Explain the basic concepts of soil dynamics, controlling factors, response on displacement, load vectors, causes of earthquakes, vibration measurements, site amplification and seismic response for a flat ground	PO(a)	C2	Lectures, Class participation	Class test, final examination
2	Apply the concepts of dynamic analysis to analyze deflections (i.e., the displacement vector) and various force components under various practical ranges of damping and frequency ratio.	PO(a)	C3	Lectures, Class participation	Class test, final examination
3	Demonstrate liquefaction problems and discuss different remedial measures.	PO(b), PO(c)	C3	Lectures, Class participation	Class test, final examination

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
4	Estimate the dynamic parameters of soils using experimental data as well as response curve under dynamic states and earthquake hazards	PO(b), PO(d)	C5	Lectures, Class participation	Class test, final examination

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning **C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

### 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-2	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-3	$\checkmark$	$\checkmark$		$\checkmark$																
CO-4	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																

Class No.	Topics	References	Corresponding CO(s)
Lecture 1-2	Introduction to soil dynamics and site effects	Handout, Text Book.	CO-1
Lecture 3-5	Site amplifications and seismic response	Handout, Text Book.	CO-1
Lecture 6-9	Liquefaction problems and remedial measures	Handout, Text Book.	CO-3
Lecture 10-13	Earthquake hazards	Handout, Text Book.	CO-4
Lecture 14-15	Dynamic soil parameters: soil modulus, Poisson's ratio and damping ratio; basic factors affecting these parameters from static to dynamic cases; some laboratory and field evaluation techniques.	Handout, Text Book.	CO-2
Lecture 16	Definition of damping ratio of soil and its estimation from laboratory static tests as well as from dynamic responses; practical range of damping ratio of soil under dynamic states.	Handout, Text Book.	CO-2
Lecture 17-18	Basic idealization of soil problem using lump-mass method and force equilibrium under dynamic loading system	Handout, Text Book.	CO-2
Lecture 19-20	Definition of Free and force vibrations; various types of free and forced vibrations under single degree of freedom SDOF	Handout, Text Book.	CO-2
Lecture 21-22	Response analysis of SDOF system under forced vibration with constant excitation force and frequency dependent excitation force.	Handout, Text Book.	CO-2

Class No.	Topics	References	Corresponding CO(s)
Lecture 23-24	Problem solving class on basic parameters, response characteristics.	Handout, Text Book.	CO-4
	4 lectures for Class test (3 nos.) & course review		

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least three class tests will be administered. Best two of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

12. Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

13. Textbook

- a. Earthquake Geotechnical Engineering: Stephan Krammer
- b. Soil Dynamics: Shamsher Prakash
- c. Dynamics of Foundation Schmidt
- 14. References
  - a. Earthquake Geotechnical Engineering
  - b. Foundation Engineering by VNS Murthy

## 20.51 Description of Course CE 447

### **SECTION A: General Information**

1.	Course Title	Soil Water Interaction
2	Toma of Course	Castashaisal Easinssains (Ostional

- 2. Type of Course Geotechnical Engineering (Optional)
- **3.** Offered to Civil Engineering
- 4. Pre-requisite Course(s) None

### **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Introduction to soil-water interaction problems: permeability, capillarity and soil suction; slopes subjected to water current, wave action etc; theories of filters and revetment design; geotechnical design of landfills.

#### **6.** Course Objectives

- To introduce soil-water interaction related problems (i.e. seepage)
- To familiarize seepage control measures.
- To enable deciding on appropriate type of soil improvement methods for various projects
- 7. Knowledge required

Preliminary knowledge in geotechnical engineering

#### 8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	Determine laboratory and field permeability of soils and seepage quantity for an earth dam	PO(a), PO(b)	C4	Lectures, Class participation	Class test, final examination
2	Design the cover layer of revetment for river bank protection	PO(c)	C6	Lectures, Class participation	Class test, final examination
3	Assess the factor of safety of slopes subjected to seepage	PO(a), PO(b)	C6	Lectures, Class participation	Class test, final examination
4	Design granular and geotextile filters for seepage control	PO(c)	C6	Lectures, Class participation	Class test, final examination
5	Decide on appropriate type of hydraulic fill and suitable improvement methods for various projects	PO(a), PO(c)	C5	Lectures, Class participation	Class test, final examination

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-2					$\checkmark$															
CO-3	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$																
CO-4					$\checkmark$															
CO-5	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$															

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction to soil-water interaction problems	Handout, Text Book.	CO-1
Lecture 2-10	Permeability, capillarity and soil suction	Handout, Text Book.	CO-2
Lecture 11	Slopes subjected to water current wave action etc.	Handout, Text Book.	CO-3
Lecture 12-13	Revetment design	Handout, Text Book.	CO-2
Lecture 14-19	Theories of filters	Handout, Text Book.	CO-4
Lecture 20-24	Geotechnical design of landfills	Handout, Text Book.	CO-5
	4 lectures for Class test (3 nos.) & course review		

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least three class tests will be administered. Best two of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

13. Textbook

- a. Seepage, Drainage and Flow Nets: Harry R Cedergren
- b. Designing with geosynthetics: Robert M Koerner
- c. Hydraulic fill structures, Geotechnical special publication no.21, eds. D J A Van Zyl and Steven G Vick
- 14. References
  - a. Hydraulic fill manual: Hoff and Kolff

## 20.52 Description of Course CE 451

### **SECTION A: General Information**

1.	Course Title	Transportation Engineering II: Pavement Design and Railway Engineering
2.	Type of Course	Transportation Engineering (Compulsory)
3.	Offered to	Civil Engineering

4. Pre-requisite Course(s) None

## **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Pavement materials: bituminous binders, cement, aggregates, embankment material, soil stabilization; mix design methods; low-cost roads; flexible and rigid pavement: pavement components and functions, pavement design and construction, road maintenance; railway engineering: general requirements, rolling stock and tracks, stations and yards, points and crossings, signalling, maintenance operations.

- 6. Course Objectives
  - To introduce different layers and constituents of flexible and rigid pavements, railway and design parameters
  - To learn to determine suitable pavement materials for low-cost road considering the socio-economic condition of Bangladesh.
  - To learn to analyze material properties and structural distress for pavement and railway track; perpetual pavement system for developing sustainable pavement system
  - To learn to design hot mix asphalt using standard methods, flexible and rigid pavements using different empirical, semi-empirical and theoretical approaches and railway signal layout

## 7. Knowledge required

Preliminary Knowledge in Transportation Engineering

#### 8. Course Outcomes

At the end of the course a student should be able to

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>explain</i> different layers and constituents of flexible and rigid pavements, the function of layers, load distribution mechanism, design principles of pavement systems, roadway furniture, uses of construction equipment and components of permanent way of railway	PO(a)	C2	Lectures, Class participation	Class test, final examination
2	<i>determine</i> suitable pavement materials for low-cost road considering the socio-economic condition of Bangladesh; resistances on rolling stock	PO(a) PO(f)	C4, C5	Lectures, Class participation	Class test, final examination
3	<i>analyze</i> material properties and structural distress for pavement and railway track; perpetual pavement system for developing sustainable pavement system	PO(b)	C5	Lectures, Class participation	Class test, final examination
4	<i>design</i> hot mix asphalt using standard methods, flexible and rigid pavements using different empirical, semi-empirical and theoretical approaches and railway signal layout	PO(c)	C6	Lectures, Class participation	Class test, final examination

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

#### 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

Cos	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1			$\checkmark$																	
CO-2							$\checkmark$													
CO-3			$\checkmark$																	
CO-4					$\checkmark$															

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction of Pavement materials, uses and their importance	Text Book, Handout	CO3
Lecture 2-3	Type, uses, properties, tests and uses of course aggregates	Text Book, Handout	CO3
Lecture 4-5	Type, uses, properties, tests and uses of fine aggregates	Text Book, Handout	CO3

Class No.	Topics	References	Corresponding CO(s)
Lecture 6-9	Type, uses, properties, tests and uses of bituminous binders	Text Book, Handout	CO3
Lecture 10	Properties and uses of Cement and embankment materials	Text Book, Handout	CO3
Lecture 11-12	Mix design methods of asphaltic concrete	Text Book, Handout	CO4
Lecture 13	Review	Text Book, Handout	
Lecture 14	Class test	Text Book, Handout	
Lecture 15	Pavement Definition; History of Pavement; Pavement Types;	Text Book, Handout	CO1
Lecture 16	Layer systems of Flexible, Rigid and Semi-Rigid Pavement; Functions of pavement courses; Load distribution mechanism;	Text Book, Handout	CO1
Lecture 17	Comparison of flexible and rigid pavements;	Text Book, Handout	CO1
Lecture 18-19	Stresses and Distresses of flexible & rigid pavements;	Text Book, Handout	CO3
Lecture 20	Technique of developing Perpetual Pavement System;	Text Book, Handout	CO3
Lecture 21	Design of pavements: Outcomes of AASHO road test, Design principles, Characteristics of traffic load, Concept of ESAL,	Text Book, Handout	CO4
Lecture 22-23	Forecasting design traffic load; Flexible pavement: RHD, TRL, AASHTO methods etc.;	Text Book, Handout	CO4
Lecture 24-25	Rigid pavement: RHD, TRL, PCA, AASHTO methods etc.;	Text Book, Handout	CO4
Lecture 26	Rigid Pavement Joints; Reinforcement design.	Text Book, Handout	CO4
Lecture 27	Review		
Lecture 28	Class tests		
Lecture 29	Low cost road: introduction, example cases, types,	Text Book, Handout	CO2
Lecture 29	Low cost road: materials, construction	Text Book, Handout	CO2
Lecture 30	Low cost road: maintenance, Bangladesh perspectives	Text Book, Handout	CO2
Lecture 31	Equipment: highway and transportation projects	Text Book, Handout	CO1
Lecture 32	Construction of embankment: earthwork, cut and fill, dry fill vs. Wet fill, compaction, quality control and assurance	Text Book, Handout	CO1
Lecture 33	Construction, subgrade	Text Book, Handout	CO1
Lecture 34	Construction of, base,	Text Book, Handout	CO1
Lecture 35	Construction of flexible surface	Text Book, Handout	CO1

Lecture 36	Construction of flexible surface	Text Book,	CO1
		Handout	
Lecture 37	Construction of rigid surface	Text Book,	CO1
		Handout	
Lecture 38	Maintenance of flexible road pavements	Text Book,	CO1
		Handout	
Lecture 39	Maintenance of flexible road pavements	Text Book,	CO1
		Handout	
Lecture 40	Maintenance of rigid road pavements	Text Book,	CO1
		Handout	
Lecture 41	Class Test, Wrapping Up and Showing of Road Construction Videos		
Lecture 42	Introduction	Text Book,	
		Handout	
Lecture 43	Rail Resistance	Text Book,	CO2
		Handout	
Lecture 44	Different types of railway gauges	Text Book,	CO3
		Handout	
Lecture 45	Deferent types of rail	Text Book,	CO3
		Handout	
Lecture 46	Rail fastening	Text Book,	CO3
		Handout	
Lecture 47	Sleepers	Text Book,	CO3
		Handout	
Lecture 48	Ballast	Text Book,	CO3
		Handout	
Lecture 49	Formation	Text Book,	CO3
		Handout	
Lecture 50	Maintenance of railway track	Text Book,	CO3
		Handout	
Lecture 51	Curvature	Text Book,	CO3
		Handout	
Lecture 52	Brakes	Text Book,	CO3
		Handout	
Lecture 53	Railway stations and yards	Text Book,	CO4
		Handout	
Lecture 54	Points and crossing	Text Book,	CO4
		Handout	
Lecture 55	Class test, Signalling and interlocking		CO4

• Class Participation: Class participation and attendance will be recorded in every class.

• Class Test: At least three class tests will be administered. Best two of them will be counted towards grading.

• Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

#### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

13. Textbook

- 1. Highway Engineering by Paul H. Wright
- 2. Principles of Pavement design by E.J. Yoder
- 3. Transportation Engineering and Transport Planning by L.R.Kadiyali
- 4. Low Volume Rural Road Surfacing and Pavements A Guide to Good Practice; By: J R Cook, R C Petts, J Rolt
- 5. Construction practices and procedures manual, RHD, Ministry of Road Transport and Bridges, GOB
- 6. Railway Engineering: S. C. Rangwala
- 7. Railway Engineering: M. M. Agarwal
- 8. A Text Book of Railway Engineering: S.C.Saxena and S.P.Arora
- 9. Information Book: Bangladesh Railway

### 14. References

Class Note

## 20.53 Description of Course CE 452

### **SECTION A: General Information**

- **1.** Course Title **Transportation Engineering Sessional I: Highway Materials and Traffic Engineering Design**
- 2. Type of Course Transportation Engineering (Compulsory)
- 3. Offered to
- **Civil Engineering 4.** Pre-requisite Course(s) None

## **SECTION B: Course Details**

5. Course Content (As approved by the Academic Council)

Testing and quality control of highway materials; bituminous mix design; roadway traffic and capacity analysis; computer models and application packages.

- 6. Course Objectives
  - To introduce to perform experiments related to roadway embankment and bituminous pavement materials
  - To learn to perform experiments related to roadway embankment and bituminous pavement materials
  - To introduce asphalt mix design using standard guidelines and practices
- 7. Knowledge required

Preliminary Knowledge in Transportation Engineering

**8.** Course Outcomes

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>perform</i> experiments related to roadway embankment and bituminous pavement materials	PO(a)	C2	Lectures, Class participation	Class Assessments, Lab Reports, Viva, Quiz
2	<i>estimate, analyze</i> and <i>report</i> the roadway capacity and signal design parameters using experimental data	PO(a) PO(b) PO(d)	C2, C4	Lectures, Class participation	Class Assessments, Lab Reports, Viva, Quiz

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
3	<i>design</i> asphalt mix using standard guidelines and practices	PO(a) PO(c)	C6	Lectures, Class participation	Class Assessments, Lab Reports, Viva, Quiz

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

#### 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1						$\checkmark$														
CO-2			$\checkmark$																	
CO-3					$\checkmark$															

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	<ol> <li>Determination of Aggregate Impact Value</li> <li>Determination of Aggregate Crushing Value</li> <li>Determination of Ten Percent Fines Value</li> </ol>	Handout	CO1
Lecture 2	<ol> <li>1.4 Determination of Flakiness Index</li> <li>1.5 Determination of Elongation Index</li> <li>1.6 Determination of Angularity Number</li> </ol>	Handout	CO1
Lecture 3	<ul> <li>2.1 Specific Gravity of Semi-Solid Bituminous</li> <li>Material</li> <li>2.2 Loss on Heating of Oil and Asphaltic</li> <li>Compounds</li> </ul>	Handout	CO1
Lecture 4	<ul><li>2.3 Penetration of Bituminous Material</li><li>2.4 Softening Point of Bituminous Material</li></ul>	Handout	CO1
Lecture 5	<ul> <li>2.5 Solubility of Bituminous Material</li> <li>2.6 Ductility of Bituminous Material</li> <li>2.7 Flash and Fire Points of Bituminous Material</li> <li>(Cleaveland open cup)</li> </ul>	Handout	CO1
Lecture 6	MID QUIZ		
Lecture 7	3.1 Determination of Roadway Capacity	Handout	CO2
Lecture 8	3.2 Determination of Saturation Flow at Traffic Signals	Handout	CO2
Lecture 9-10	4.1 Determination of CBR	Handout	CO1
Lecture 11- 12	4.2 Marshall Mix Design	Handout	CO3
Lecture 13	Determination of Los Angeles Abrasion Value	Handout	CO1
Lecture 14	Final Quiz		

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Assessment: A short class assessment will be administered prior to each lecture. Average marks obtained from those will be counted towards grading.
- Viva: Two oral viva sessions will be held at the middle and the end of the term respectively.
- Quiz: Two comprehensive sessional quizzes will be held at the middle and the end of the term respectively following the guideline of Academic Council.

### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Lab Report	15%
Class Assessment	20%
Viva	5%
Quiz	50%

13. Textbook

1. Traffic and Highway Engineering, FOURTH EDITION by Nicholas J. Garber and Lester A. Hoel

- 14. References
  - 1. Lecture Notes on CE 452

## 20.54 Description of Course CE 455

### **SECTION A: General Information**

1.	Course Title Drainage and Airport	Transportation Engineering IV: Pavement Management,
2.	Type of Course	Transportation Engineering (Optional)
3.	Offered to	Civil Engineering
4.	Pre-requisite Course(s)	None

## **SECTION B: Course Details**

### 5. Course Content (As approved by the Academic Council)

Pavement management systems; evaluation and strengthening of pavements; drainage: highway drainage and drainage structures; airports: importance, advantages and trends in air transportation, planning and design of airports, aircraft characteristics related to airport design, types and elements of airport planning studies, airport configuration, geometric design of the landing area, terminal area, heliports, design of airport pavements, lighting, marking and signing, airport drainage

**6.** Course Objectives

- To introduce key aspects of airport design and operations along with its main elements and master plan
- To introduce the design the optimal orientation of a runway and estimate the geometric design characteristics of an airport including taxiways, aprons and runways
- To learn pavement management systems and apply techniques for pavement strengthening/overlay design

7. Knowledge required

Preliminary Knowledge in Transportation Engineering

8. Course Outcomes

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>characterize</i> key aspects of airport design and operations	PO(a)	C2	Lectures, Class participation	Class test, final examination

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
2	<i>describe</i> the main elements of an airport master plan	PO(a) PO(f)	C2	Lectures, Class participation	Class test, final examination
3	<i>design</i> the optimal orientation of a runway (through wind rose analysis).	PO(c)	C2	Lectures, Class participation	Class test, final examination
4	<i>estimate</i> the geometric design characteristics of an airport including taxiways, aprons and runways	PO(c)	C2	Lectures, Class participation	Class test, final examination
5	<i>describe</i> special characteristics and requirements of airport and highway drainage	PO(b)	C2	Lectures, Class participation	Class test, final examination
6	<i>analyze</i> pavement management systems and apply techniques for pavement strengthening/overlay design	PO(c) PO(g)	C4	Lectures, Class participation	Class test, final examination

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

^{9.} Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1			$\checkmark$																	
CO-2			$\checkmark$																	
CO-3					$\checkmark$															
CO-4					$\checkmark$															
CO-5		$\checkmark$																		
CO-6							$\checkmark$													

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Introduction of the course, Rationale, History, etc	Handout, Text Book	CO6
Lecture 2	Damages for faulty drainage, good drainage, Drainage and Geometric design	Handout, Text Book	CO5
Lecture 3	Surface drainage system	Handout, Text Book	CO5
Lecture 4	Design of Surface drainage system	Handout, Text Book	CO5
Lecture 5	Design of side ditches and other open channels	Handout, Text Book	CO6
Lecture 6	Culverts and Bridges	Handout, Text Book	CO6

Class No.	Topics	References	Corresponding CO(s)
Lecture 7	Highway Sub Surface drainage system	Handout, Text Book	CO6
Lecture 8	Drainage in Urban area & Class Test 1	Handout, Text Book	CO6
Lecture 9	Airport Drainage	Handout, Text Book	CO6
Lecture 10	Highway maintenance	Handout, Text Book	CO6
Lecture 11	Pavement Management System	Handout, Text Book	CO6
Lecture 12	Strengthening of Pavements	Handout, Text Book	CO6
Lecture 13	Overlay of Airport Pavements	Handout, Text Book	CO6
Lecture 14	Overall discussion – Review of the course		
Lecture 15	Air Transportation Systems	Handout, Text Book	CO1
Lecture 16	Components of Air Transportation	Handout, Text Book	CO1
Lecture 17	Airport Planning	Handout, Text Book	CO2
Lecture 18	Airport Configuration	Handout, Text Book	CO2
Lecture 19	Analysis of wind and Site Selection Approach	Handout, Text Book	CO2
Lecture 20	Class Test 2	Handout, Text Book	
Lecture 21	Planning and Design of the Terminal Area	Handout, Text Book	CO2
Lecture 22	Air Traffic Control and Air Traffic Control Facilities	Handout, Text Book	CO3
Lecture 23	Air Traffic Control and Air Traffic Control Facilities (Contd.)	Handout, Text Book	CO3
Lecture 24	Airport Marking and Signage	Handout, Text Book	CO4
Lecture 25	Airport Marking and Signage (Contd.)	Handout, Text Book	CO4
Lecture 26	Airport Lighting	Handout, Text Book	CO4
Lecture 27	Air Safety & Regulation issues	Handout, Text Book	CO1
Lecture 28	Overall discussion – Review of the course		

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least three class tests will be administered. Best two of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

#### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

- 13. Textbook
  - 1.Planning and design of airports by R. Horonjeff
  - 2. Highway Engineering by P. Wright
- 14. References
  - 1. Airport Planning and Management by Seth B.Y. and A.T. Wells
  - 2. Airport Management by C.D. Prather and R.N. Steele
  - 3. Highway Engineering by Kadiali and Lal

## 20.55 Description of Course CE 457

### **SECTION A: General Information**

- I. Course Title
   Transportation Engineering V: Urban Transportation Planning and Management

   2. Type of Course
   Transportation Engineering (Optional)

   3. Offered to
   Civil Engineering
- 4. Pre-requisite Course(s) None

### **SECTION B: Course Details**

**5.** Course Content (As approved by the Academic Council)

The urban transport problems and trends; road network planning; characteristics and operation of different transit and paratransit modes, planning transit network; estimating system costs and benefits, pricing and financ4ing, evaluation, transit users attitude, policies and strategies for transit development in metropolitan cities; freight traffic planning and management; selected transport case studies, congestion management; safety management; environmental issues and sustainable transport.

- 6. Course Objectives
  - To familiarize with the urban four step travel demand modelling process.
  - To learn to analyze the urban road safety philosophy and examine the principles for creating safe road environment.
  - To comprehend urban passenger and freight transport problems, trends and mitigation measures.
  - Learn to carry out urban transport project evaluation process considering sustainability.

### 7. Knowledge required

Preliminary Knowledge in Transportation Engineering

8. Course Outcomes

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<i>Comprehend</i> the urban four step travel demand modelling process.	PO(a) PO(b)	C2	Lectures, Class participation	Class test, final examination
2	<i>Analyze</i> the urban road safety philosophy and examine the principles for creating safe road environment.	PO(a)	C4	Lectures, Class participation	Class test, final examination

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
3	<i>Comprehend</i> urban passenger and freight transport problems, trends and mitigation measures.	PO(a) PO(c)	C2	Lectures, Class participation	Class test, final examination
4	<i>Evaluate</i> urban transport project considering sustainability.	PO(b) PO(g)	C6	Lectures, Class participation	Class test, final examination

*PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

### 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

Cos	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1			$\checkmark$																	
CO-2			$\checkmark$																	
CO-3					$\checkmark$															
CO-4							$\checkmark$													

Class No.	Topics	References	Corresponding CO(s)
Lecture 1	Course Overview	Handout	
Lecture 2	Transport Planning Data	Handout	CO-1
Lecture 3	Surveys Related to Urban Transportation Planning	Handout	CO-1
Lecture 4	Models in Planning	Handout	CO-1
Lecture 5	Trip Generation Model	Handout	CO-1
Lecture 6	Trip Distribution Model	Handout	CO-1
Lecture 7	Class Test 1		
Lecture 8	Trip Distribution Model (Contd)	Handout	CO-1
Lecture 9	Mode Choice Model	Handout	CO-1
Lecture 10	Traffic Assignment Model	Handout	CO-1
Lecture 11	Traffic Assignment Model (Contd)	Handout	CO-1
Lecture 12	Sustainable Transportation System	Handout	CO-4
Lecture 13	Road Safety and Accident Studies	Handout	CO-2
Lecture 14	Road Safety and Accident Studies (Contd)	Handout	CO-2
Lecture 15	Urban Transport Problems and Trends	Handout	CO-3
Lecture 16	Urban Transport Problems and Trends (Contd)	Handout	CO-3
Lecture 17	Automobile Dependency: Trends, factors and Consequences	Handout	CO-3
Lecture 18	Urban Transport Development Paths	Handout	CO-3
Lecture 19	Urban Transport Development Paths (Contd)	Handout	CO-3
Lecture 20	Urban Transit System and Challenge	Handout	CO-3
Lecture 21	Class Test 1		
Lecture 22	Urban Transit System and Challenge (Contd)	Handout	CO-3
Lecture 23	Urban Goods Movement: Characteristics, Issues and Problems	Handout	CO-3

Lecture 24	Urban Goods Movement: Characteristics, Issues and Problems (Contd)	Handout	CO-3
Lecture 25	Congestion Types and Mitigation Measures	Handout	CO-3
Lecture 26	Class Test 2		
Lecture 27	Evaluating Transportation Alternatives	Handout	CO-4
Lecture 28	Evaluating Transportation Alternatives (Contd)	Handout	CO-4

- Class Participation: Class participation and attendance will be recorded in every class.
- Class Test: At least three class tests will be administered. Best two of them will be counted towards grading.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

### **12.** Distribution of Marks

Item	Marks
Attendance	10%
Class Tests	20%
Final Examination	70%

### 13. Textbook

- 1. Modelling Transport by Ortuzar, J. de Dios and L.G. Willumsen
- 2. Safer Roads: A Guide to Road Safety Engineering by K. W. Ogden

#### 14. Reference

1. Urban Transportation Planning by M.D. Meyer and E. J. Miller

## 20.56 Description of Course Chem 103

### **SECTION A: General Information**

1.	Course Number	Chem103
	Course Title	Chemistry-I
	Credit Hours	3
2	Level and Term	L1T1
	Academic Term	Month Year (for example, Jan 2022)
3	Type of Course	Chemistry
	Offered to	Department of Civil Engineering
4	Pre-requisite Course(s)	N/A
5	Course Website	MS Teams
6	Lecture Schedule	As per the published routine

7	Important Dates	For important dates and examination schedules and the latest updates, please
-		follow the course website

# 8 Course Teachers

Name	Office	Email	Consultation Hour(s)
(Name of teacher 1)	Dept. of	@chem.buet.ac.bd	Example: Saturday
	Chemistry		(10:00-10:50 am) -
			Location/Link
(Name of teacher 2)	Dept. of	@chem.buet.ac.bd	Example: Saturday
	Chemistry		(10:00-10:50 am) -
			Location/Link

# **SECTION B: Course Details**

9	Course Content (As approved by the Academic Council)		
	Atomic structure and quantum theory: Bohr's theory, Heisenberg's uncertainty principle, Schrödinger's wave equation, electronic configurations and properties of atoms. Electronic configurations and properties of molecules: chemical bond, valence bond theory, molecular orbital theory, shape of molecules, bond length, bond energy. Chemistry of halogens, alkali metals, alkaline earth metals, non-metals and heavy metals. Modern concepts of acids and bases. Different types of solutions. Properties of dilute solution. Thermo-chemistry. Electrochemistry: voltaic cells, electrolytic cells. Colloids and colloidal solution. Chemical and ionic equilibria. Chemistry of water; chemistry of water pollution. Chemistry of cements, silicates and limes.		

10	Course Objectives		
	Course objective 1	To provide an in-depth understanding of the fundamentals of building components in atoms, molecules and thus matters, solution system, equilibrium and energetics of physico-chemical systems.	
	Course objective 2	To enable students building a foundation on underlying state-of-the-art scientific knowledge, and to develop critical thinking abilities for identifying, analyzing and resolving the issues they will encounter in their professional career.	

11	Knowledge required
	N/A

12	Course Outcomes
	Course Outcomes (CO) and their mapping with Program outcomes (PO) and Teaching-Learning
	Assessment methods:

CO Statement Upon successful completion of the course, students should be able to:	Corres pondin g	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
	PO(s)*			

CO-1	Identify fundamental concepts of atomic structure, chemical bonding, and geometry of molecules according to quantum theory	1	C1	Lectures, Homework	Written exams, class test
CO-2	Illustrate the basic principles associated with properties of atom/molecule, solution, chemical equilibria, colloids, and electrochemistry	1	C2	Lectures, Homework, presentation	Written exams, class test
CO-3	Solve problems associated with physico-chemical changes and environmental issues	2	C3	Homework, lecture	Written exams, class test
CO-4	Analyze the behavior of materials and examine environmental challenges with the concept of chemistry.	3	C4	Lecture, presentation	Written exams, class test

* PO1 Engineering knowledge, PO2 Problem analysis, PO3 Design/development of solutions, PO4 Investigation, PO5 Modern tool use, PO6 The engineer and society, PO7 Environment and sustainability, PO8 Ethics, PO9 Individual work and teamwork, PO10 Communication, PO11 Project management and finance, PO12 life-long learning

C-Cognitive: C1: Knowledge; C2: Understand; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6:

Adaptation; P7: Organization

Lecture Plan: Teacher-1

13

		-	
	Lecture Topics	References	Corresponding CO(s)
L1	Concepts of acids and bases		CO1, CO2
L2	Theories of acid and base		CO2
L3	Theories of acid and base		CO3, CO4
L4	Different types of solutions		CO2
L5	Colligative properties, vapor pressure lowering, elevation of boiling point		CO2, CO3
L6	Depression of freezing point, Osmotic pressure, colligative properties of electrolytes		CO2, CO3
L7	Properties of dilute solution for electrolytes		CO2, CO4
L8	Basic concept of thermodynamics and thermochemistry		CO2, CO3
L9	Laws of thermodynamics, heat capacity		CO2, CO3
L10	Caloric value of fuel and food		CO3, CO4
L11	Class Test-1		
L12	Electrochemistry concepts		CO2
L13	Electrochemistry: voltaic cells		CO2, CO4
L14	Electrochemistry: electrolytic cells		CO3, CO4
L15	Colloids and colloidal solution		CO1, CO2
L16	Properties of colloids		CO2, CO4
L17	Chemical and ionic equilibria		CO2, CO3
L18	Chemical and ionic equilibria		CO2, CO4
L19	Chemistry of water; chemistry of water pollution		CO2
L20	Chemistry of cement, silicates and limes		CO2
L21	Class Test-2		

### 13 Lecture Plan: Teacher-2

	Lecture Topics	References	Corresponding CO(s)
L1	General introduction and need of chemistry for engineering students		-
L2	Concepts of atomic structure, subatomic particles, atomic spectra, Bohr's Atomic model of hydrogen		CO1, CO2
L3	Wave- particle duality of matter and energy: blackbody radiation and plank's quantum theory, photoelectric effect, dual nature of light		CO1, CO4
L4	Broglie's matter wave, Dual nature of electron and Heisenberg uncertainty principle		CO1, CO2
L5	Schrodinger wave equation, quantum numbers, Electron configuration of multielectron systems, effect of electronic configuration on atom's size, effective nuclear charge,		CO1, CO4
L6	Periodic law, effective nuclear charge		CO1, CO2
L7	Periodic variation of properties		CO1, CO2
L8	Chemical bond and energies involved in the bond formation		CO1, CO3
L9	Molecular structure		CO2, CO3
L10	Quantum concepts of bonding		CO3, CO4
L11	Class Test 1		
L12	Bond length		CO1, CO2
L13	Bond energy		CO1, CO3
L14	Halogens Chemistry		CO1, CO3
L15	Properties of Halogens		CO1, CO4
L16	Alkali metals and properties		CO1, CO4
L17	Chemical properties of alkali metals		CO1, CO3
L18	Alkaline earth metals		CO1, CO4
L19	Class test 2		
L20	Non-metals		CO1, CO2
L21	Heavy metals		CO1, CO2

14	Assessment Strategy
i	Class Participation: Class participation and attendance will be recorded in every class.
ii	Continuous Assessment: Continuous assessment of any of the activities such as quizzes, assignments, presentations, etc. The scheme of the continuous assessment for the course will be declared on the first day of classes
iii	Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

15	Distribution of Marks	
	Class Participation 10%	
	Continuous Assessment	20%
	Final Examination	70%
	Total	100%

16	Textbooks	
	Textbook-1	Chemistry by Raymond Chang, Kenneth A. Goldsby
	Textbook-2	General Chemistry by Ebbing, Darrell, Gammon, Steven D.
	Textbook-3	Principles of Physical Chemistry by Kindle edition by Maron, S. H., Prutton, C.F.
	Textbook-4	Chemistry: The Central Science (MasteringChemistry)
		by Theodore Brown, H. LeMay, Bruce Bursten, Catherine Murphy, Patrick Woodward,
		Matthew Stoltzfus

17	References	
	Reference-1	
	Reference-2	

# 18 Weighting COs with Assessment methods

Assessment Method	% Weight	Mark distributions on COs and POs					
		CO1	CO2	CO3	CO4		
		PO1	PO1	PO2	PO3		
Attendance	10	2.5	2.5	2.5	2.5		
Continuous Assessment	20		10	10			
Final	70	10	30	20	10		

# 19. CO-PO mapping

17.00101	napping												
Level/term	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	no												
L-1, T-1	Chem	✓	$\checkmark$	$\checkmark$									
	103	CO1,	CO3	CO4									
		CO2											

# 20.57 Description of Course Chem 114

# **SECTION A: General Information**

1.	Course Number	Chem 114
	Course Title	Inorganic Quantitative Analysis
	Credit Hours	1.50
2	Level and Term	L1T1
	Academic Term	Month Year (example; Jan 2022)
3	Type of Course	Chemistry Sessional
	Offered to	Department of Civil Engineering
4	Pre-requisite Course(s)	N/A
5	Course Website	MS Teams

6	Lecture Schedule	As per the published routine
7	Important Dates	For important dates and examination schedules and latest updates, please follow the course website

8	Course Teachers
•	

Name	Office	Email	Consultation Hour(s)	
(Name of teacher 1)	Dept. of	@chem.buet.ac.bd	Example: Saturday (10:00-	
	Chemistry		10:50 am) - Location/Link	
(Name of teacher 2)	Dept. of	@chem.buet.ac.bd	Example: Saturday (10:00-	
	Chemistry		10:50 am) - Location/Link	

# **SECTION B: Course Details**

9	Course Content (As approved by the Academic Council)
	Volumetric analysis: Acidimetry-Alkalimetry. Titrations involving redox reactions: Determination of Fe, Cu,
	and Ca volumetrically. Determination of Ca and Mg in water.

10	Course Objectives	
	Course objective-1	To develop the basic understanding of a student dealing with chemical reagents, equipment necessary to perform quantitative inorganic analysis along with associated theoretical knowledge on acidimetry-alkalimetry, redox and complexometry
	Course objective-2	To provide hands on experience on the techniques of volumetric methods in analyte determination and to prepare students presenting their experimental findings as scientific reports

11	Knowledge required
	N/A

# 12 Course Outcomes

Course Outcomes (CO) and their mapping with Program outcomes (PO) and Teaching-Learning Assessment methods:

	CO Statement Upon successful completion of the course, students should be able to:	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity (-ies)	Assessment Tool(s)
CO1	Describe different parameters and techniques related to inorganic quantitative analysis	1	C1	Lectures	Quiz, Class performanc, viva, Report writing
CO2	Follow the instructions to perform guided enquiry in determining volume of titrants in different kinds of titrations	4, 9	Ρ3	Lectures and Demonstration	Quiz, Class performanc, viva, Report writing Final Exam

	CO Statement Upon successful completion of the course, students should be able to:	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity (-ies)	Assessment Tool(s)
CO3	Analyze the experimental data for quantitative estimation of an analyte individually or by a group	2, 9	C4	Lectures, Demonstration	Quiz, Class performanc, viva, Report writing Final Exam
CO4	Prepare scientific reports on experiments by organizing experimental findings	12	C6	Homework	Quiz, Class performanc, viva, Report writing, Final Exam

* PO1 Engineering knowledge, PO2 Problem analysis, PO3 Design/development of solutions, PO4 Investigation, PO5 Modern tool use, PO6 The engineer and society, PO7 Environment and sustainability, PO8 Ethics, PO9 Individual work and teamwork, PO10 Communication, PO11 Project management and finance, PO12 life-long learning

C-Cognitive: C1: Knowledge; C2: Understand; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

	Lecture Topics	References	Corresponding CO(s)
L1	Briefing on lab safety protocol and quiz on it		CO1
L2	Course outline and introductory discussions on chemical analysis		CO1
L3	Standardization of NaOH solution with standard oxalic acid solution		CO1 - CO4
L4	Standardization of hydrochloric acid with standard NaOH solution		CO1 - CO4
L5	Standardization of HCl with standard Na2CO3 solution		CO1 - CO4
L6	Standardization of sodium thiosulphate solution with a standard potassium dichromate solution		CO1 - CO4
L7	Estimation of copper contained in a supplied solution by iodometric method		CO1 - CO4
L8	Determination of ferrous iron by a standard potassium dichromate solution		CO1 - CO4
L9	Standardization of potassium permanganate solution with standard sodium oxalate solution		CO1 - CO4
L10	Determination of ferrous ion in a solution by standard KMnO4 solution		CO1 - CO4
L11	Determination of calcium in a sample of calcium carbonate		CO1 - CO4
L12	Viva		CO1, CO3
L13	Practical exam		CO2, CO3
L14	Quiz		CO1, CO3

14	Assessment Strategy
i	Class Participation: Class participation and attendance will be recorded in every class.

ii	Continuous Assessment: Continuous assessment will be accomplished following any of the activities such as quizzes, report writing and viva. The scheme of the continuous assessment for the course will be declared on the first day of classes
iii	Final Examination: Practical examination will be held individually at the end of the sessional classes.

15	Distribution of Marks					
	Attendance and Class Performance	20				
	Report	30				
	Quiz	40				
	Viva	20				
	Final Examination	40				
	Total	150				

16	Textbooks	
	Textbook-1	Quantitative Inorganic Analysis, By: A. I. Vogel

17	References	
	Reference-1	

18	Weighting COs with Assessment methods

Assessment Method	Marks	Mark distributions on COs and POs			
		CO1	CO2	CO3	CO4
		PO1	PO4, 9	PO 2, 9	PO12
Attendance and class performance	20	5	10	5	
Report	30				30
Quiz	40	30		10	50
Viva	20	20			
Final Examination	40		20	20	

# **CO-PO** mapping of course offered

Level	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
/term	no												
L-1, T-1	Chem	✓	✓		✓					✓			✓
	114	CO1	CO3		CO2					CO2			CO4
										CO3			

# 20.58 Description of Course HUM 185 Section A: General Information

**1.** Course Title

English

- 2. Type of Course Non-departmental, Theory, Compulsary
- **3.** Offered to

- Department of Civil Engineering None
- **4.** Pre-requisite Course(s)

# Section B: Course Details

5. Course Content (As approved by the Academic Council)

Introduction: Current approaches to learning English. English Phonetics: Phonetics & correct English pronunciation. English syntax: vocabulary, diction & English sentence; sentence variety & style; grammatical problems. Reading skill: Readability, reading strategies, generating ideas through purposivereading, reading of selected stories. Writing skill: Principles of effective writing; generating ideas, planning, organization and development of writing; composition, précis etc. Approaches to Communication: Communication today; Written Communication: Business communication, tenders and quotations, journal articles, report. OralCommunication: Dialogue, technical and scientific presentation

- 6. Course Objectives
  - To address the specific needs of the students in strengthening their English language skills in reading, writing, speaking and listening
  - To enhance their ability to understand and apply the principles of effective writing
  - To prepare students to analyse literary texts critically

# 7. Knowledge required

None

CO	CO Statement	Corresponding	Domains and	Delivery Method(s)	Assessment
No.	Upon completion of thecourse	PO(s)*	Taxonomy	and Activity(-ies)	Tool(s)
	students will be able to		level(s)**		
1	<b>Identify</b> the required	PO (10)	C1,C3	Lectures,	Assignment,
	communication skills in			PPT Presentation	Class Test
	English for smooth				and Term
	navigation in the academic world and beyond				Final Exam
2	Acquire necessary skills for	PO(10)	C1, A1, A4	Lectures,	Assignment,
	successful			PPT Presentation	Class Test
	communication in English				and Term
					Final Exam
3	Gain confidence in listening,	PO(9)	C3,C5, A1, A4	Lectures,	Assignment,
	reading, speaking and writing			PPT Presentation	Class Test
	English, functioning				and Term
	effectively as an individual				Final Exam
	and as a member of a team				
4	Analyse and evaluate	PO(j), PO(8)	C4,C6, P1,P3	Lectures,	Assignment,
	literary texts using			PPT Presentation	Class Test
	appropriate critical methods,				and Term
	aiming at improvement of				Final Exam
	communication				

СО	CO Statement	Corresponding	Domains and	Delivery Method(s)	Assessment
No.	Upon completion of thecourse	PO(s)*	Taxonomy	and Activity(-ies)	Tool(s)
	students will be able to		level(s)**		
5	<b>Demonstrate</b> competence in	PO(12)	C3, A4, A5, P6,	Lectures,	Assignment,
	effective communication in English		P7	PPT Presentation	Class Test and Term Final Exam

*PO (1): Engineering knowledge; PO(2): Problem analysis; PO (3): Design/development of solutions; PO(4): Investigation; PO(5) Modern tool use; PO(6): The engineer and society; PO(7): Environment and sustainability; PO(8): Ethics; PO(9): Individual work and teamwork; PO(10): Communication; PO(11): Project management and finance; PO(12): life-long learning

**C -Cognitive: C1 - Knowledge, C2 - Comprehension, C3 - Application, C4 - Analysis, C5 - Synthesis, C6 - Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing P- Psychomotor: P1: Perception; P2: Set; P3:Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

# 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	К2	К3	К4	K5	K6	K7	K8	P1	P2	Р3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1							1													
CO-2							1													
CO-3							1													
CO-4							1													
CO-5							1													

#### **10.** Lecture Plan

Lec#	Topics	References	Corresponding CO(s)
1-3	English Phonetics: Ways of correct English pronunciation,the speech sounds of English Language,differences and similarities between the speech sound of English and Bengali, the vowels, consonants and diphthongs, Phonetic transcription of some words	Baker (2008), Handout, Hornby (2020)	CO3, CO5
4-6	Construction of sentences: Different types of sentences and their structure	Raymond (2001), Thomson & Martinet (2001), Handout	CO1, CO2
7-9	Paragraph Writing: What is a paragraph? $\underline{T}$ opic sentence, connectives, order and unity in a paragraph Evaluation (Class Test 1)	Imhoof & Herman (2000) Handout	CO5
10-12	Grammatical Problems: Errors which usually occur in sentences, problems with different parts of speech with special reference to verbs, some problems in usage	Berry (2000) Fitikides (2002)	CO1, CO2, CO3, CO5

Lec#	Topics	References	Corresponding CO(s)
13-14	Dialogue writing:What is a dialogue? Points that we need to keep in mind while writing dialogue on a given topic; Concept of effective oral presentation	Handout Sharma& Mohan (2000)	CO1, CO2, CO3, CO5
15-17	Report Writing: Writing and Layout of a report, Different types of reports, Book Report; Science Project report; points that we should keep in mind while writing a science project report; writing reports on general topics	Sharma& Mohan (2000)	CO1, CO2, CO3, CO5
18	Evaluation (Class Test 2)		
19	Composition: Thesis sentence, organization, linking expressions, writing guided compositions following some hints, writing compositions on current affairs	Imhoof & Herman ( 2000)	CO1, CO2, CO3
20	Comprehension: Reading imaginative and practical passages, meanings, styles, facts in given passages; points which we should keep in mind while doing exercise on comprehension, practicing reading comprehension	Simon& Swan (2001), Mosback, & Mosback (1999)	CO1, CO3, CO4, CO5
21	Vocabulary: How can we enrich our collection of words? Getting meanings of unfamiliar words from their contexts, acquiring common words we need in our everyday life	McCarthy & O'Dell (2002), Handout	CO1, CO3, CO4, CO5
22	Précis Writing: What is a précis? Which points we need to keep in mind while writing précis on a given passage? Writing précis on given passages	Sharma& Mohan (2000)	CO2, CO3, CO4, CO5
23-24	General Strategies for the Writing Process:Generating Ideas, Identifying Audiences and Purposes, Constructive Arguments, Stating Problems, Drafting and Finalizing. Approaches to Communication, Specific Applications of: Tenders and Quotations, Resume and Job Letters, Journal Articles, Technical and Scientific Presentation. Assignment (equivalent to One Class Test)	Sharma& Mohan (2000), Handout	CO1,CO2, CO3, CO5
25-26	'The Bet' by Anton Chekhov, Chekhov and his time; a general discussion of the story; 'The Diamond Necklace', by Guy-De-Maupassant, a general discussion of the story, a critical analysis of the story, important characters, themes, symbols	Choudhury & Haq (1982)	CO1,CO2, CO3,CO4,CO5
27	'The Garden Party' by Katherine Mansfield, a general discussion of the story, a comparative and critical analysis of the three stories	Siddiqui (1968)	CO1,CO2, CO3,CO4,CO5

Lec#	Topics	References	Corresponding CO(s)
28	Feedback Session: A general discussion on the topics already covered		CO5

# **11.** Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment: Continuous assessment any of the activities such as quizzes, assignment, presentation, etc. The scheme of the continuous assessment for the course will be declared on the first day of classes.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of Academic Council.

# **12.** Distribution of Marks

Class Participation	10%
Continuous Assessment	20%
Final Examination	70%
Total	100%

# 13. Textbooks/References

- Imhoof, M., & Herman, H. From Paragraph to Essay. Harlow: Longman, 2000.
- Berry, T.E. TheMost Common Mistakes in English Usage. New Delhi: McGraw-Hill, 2000.
- Fitikides, T.J. Common Mistakes in English. London: Longman, 2002.
- Sharma, R C., & Mohan, Krishna. *Commercial Correspondence and Report Writing*. New Delhi: Tata McGraw-Hill, 2000
- G, Simon., & Swan, M. Effective Reading. Cambridge: CUP, 2001
- Mosback, G., & Mosback, V. Practicing Faster Reading. Cambridge: CUP, 1999
- Choudhury, Serajul Islam and Haq, Ahsanul. Ed. *Prose of Our Time*. Dhaka: Nawroze Kitabistan, 1982
- Siddiqui, M.Naimuddin. A Selection of Short Stories. London: MacMillan, 1968
- Raymond, Murphy. Intermediate English Grammar. Cambridge: CUP
- ---. Essential Grammar in Use. Cambridge: CUP, 2001
- Thomson, A. J., & Martinet, A.V. A Practical English Grammar. New Delhi: OUP, 2001
- McCarthy, Michael & O'Dell, Felicity. *English Vocabulary in Use*. Cambridge: CUP,2002

# **Important University Policies:**

 Rules and regulations for the undergraduate programmes: <u>https://www.buet.ac.bd/info/Academicinformation/RulesUndergradprogram</u>

# **Important Departmental/Course Policies**

• Program Outcomes: Link to program outcomes

# **CO-Po mapping for all offered courses:**

Complete this table with tick mark (). If required add/delete columns or rows

Level and Term	Course Name	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Level 1 Term 2	English								1	1	~		1

# 20.59 Description of Course HUM 217 Section A: General Information

- 1. Course Title
- 2. Type of Course
- 3. Offered to

- Engineering Economics Compulsory, Theory, Non-departmental Department of Civil Engineering None
- **4.** Pre-requisite Course(s)

# Section B: Course Details

5. Course Content (As approved by the Academic Council)

Economics and engineering; microeconomics and macroeconomics; theory of demand and supply and their elasticities; demand estimation; price determination; indifference curve technique; theory of production; theory of cost and cost estimation; market structure; national income accounting, depreciation; circular flow of income and expenditure; cost-benefit analysis; payback period, net present value (NPV), internal rate of return (IRR), inflation; economic feasibility of engineering undertakings

# 6. Course Objectives

This course has been designed for undergraduate students

- To give a clear idea about the fundamental economic problems and provide adequate knowledge for understanding basic economic theories and practices, and their implications in an economy.
- To provide students an understanding of how the modern economy functions in the real world and thereby prepare them to evaluate the state-of-affairs of an economy using an economist's lenses.
- To make students enable to apply their acquired knowledge in different stages of their professional career.
- 7. Knowledge required Not Applicable

CO No.	At the end of the course, and having completed the essential readings and activities, students would be able to:	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
CO1	<b>understand</b> the nature of the discipline, economics science, and how it deals with the issues related to scarcity of resources	PO(i)	C1. C2; A1; P1	Lectures; power point presentations; Home work	Class test; assignment; final exam
CO2	<b>describe</b> consumer behaviour with reference to utility analysis, market mechanism through interactions between demand and supply analysis, and their elasticities	PO(9)	C2; A1; P1	Lectures; power point presentations; Home work	Class test; assignment; final exam

CO No.	At the end of the course, and having completed the essential readings and activities, students would be able to:	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
CO3	<b>Explain</b> the situation of a firm with reference to factors of production, determinants of cost, economies, and diseconomies of scale of production, conditions for profit maximization and so on	PO(9)	C2; P4	Lectures; power point presentations; Group Discussion; Home work	Class test; extempore test; assignment; final exam
CO4	<b>analyse</b> the performance of firms under different market structures	PO(9)	C2; A3	Lectures; power point presentations; Group discussion;Home work	Class test; extempore test; assignment; final exam
CO5	evaluate important economic events and statistics, and, more importantly, know what determines them	PO(9)	C2; C6 A4	Lectures; power point presentations; Home work	Class test; assignment; final exam
CO6	<b>understand</b> the core concepts of macroeconomics, e.g., aggregate demand, aggregate supply, national income accounting, circular flow of income and expenditure, savings and investment, inflation, and money	PO(9)	C1. C2; P1	Lectures; power point presentations; Home work	Class test; assignment; final exam
CO7	<b>synthesise</b> the implications of different economic policies like fiscal policy, monetary policy and trade policy with reference to Bangladesh	PO(9), PO(7)	C3, C4, C5; A3; P5	Lectures; power point presentations; Home work	Class test; assignment; final exam
CO8	<b>conceive and compare</b> different techniques and tools for economic evaluation of engineering undertakings and related projects	PO(7), PO (11), PO (12)	C3;C4.C5 A3, A4; A5 P5. P7	Lectures; power point presentations; Group Discussion; Home work	Class test; extempore test; assignment; final exam
CO9	<b>illustrate</b> the nature of an economic theory and the applicability of economic theories to the problems of developing countries	PO(7), PO(9), PO(11), PO(12)	C5; A4, A5; P7	Lectures; power point presentations; Group discussion;Home work	Class test; extempore test; assignment; final exam

*PO (1): Engineering knowledge; PO(2): Problem analysis; PO (3): Design/development of solutions; PO(4): Investigation; PO(5) Modern tool use; PO(6): The engineer and society; PO(7): Environment and sustainability; PO(8): Ethics; PO(9): Individual work and teamwork; PO(10): Communication; PO(11): Project management and finance; PO(12): life-long learning

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing
 P- Psychomotor: P1: Perception; P2: Set; P3:Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

# 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1																				
CO-2																				
CO-3																				
CO-5																				
CO-6																				
CO-7																				
CO-8																				
CO-9																				

# **10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
1-2	Definition of Economics. Economics and Engineering. Principles of Economics	Hubbard, G. & O'Brien, A. P. (2021a), Salvatore, D (2008), Sloman et.al., (2018)	CO1
3-4	microeconomics: consumer behaviour, theory of demand and supply and their elasticity	Hubbard, G. & O'Brien, A. P. (2021a); Salvatore, D (2008), Sloman et.al., (2018), Koutsoyannin, A (1975).	CO2
5-6	price determination; indifference curve technique	Hubbard, G. & O'Brien, A. P. (2021a); Salvatore, D (2008), Sloman et.al., (2018)	CO2
7-8	factors of production; marginal analysis and optimization	Hubbard, G. & O'Brien, A. P. (2021a); Salvatore, D (2008), Sloman et.al., (2018)	CO2
9-10	theory of production; theory of costs	Hubbard, G. & O'Brien, A. P. (2021a); Salvatore, D (2008), Sloman et.al., (2018).	CO3
11-12	market structure. optimization	Hubbard, G. & O'Brien, A. P. (2021a); Salvatore, D (2008), Sloman et.al., (2018)	CO4
13-14	internal and external economies and diseconomies	Hubbard, G. & O'Brien, A. P. (2021a)	CO3, CO4
15-16	Macroeconomics: major macroeconomic policy issues, national income analysis	Hubbard, G. & O'Brien, A. P. (2021b); Diulio, E (1997), Sloman et.al., (2018); Dornbusch, R., Fischer, S.andStartz, R. (2011)	CO5
17-18	aggregate demand and aggregate supply	Hubbard, G. & O'Brien, A. P. (2021b);Diulio, E (1997), Sloman et.al., (2018); Mankiw N.G (2007)	CO6

19-20	savings and investment; circular flow of income and expenditure; inflation; money; Internal and external economies and diseconomies	Hubbard, G. & O'Brien, A. P. (2021b);Diulio, E (1997), Sloman et.al., (2018); Mankiw N.G (2007).	CO6
21-22	monetary policy, fiscal policy, and trade policy with reference to Bangladesh	Hubbard, G. & O'Brien A. P. (2021b);Dornbusch, R., Fischer, S.andStartz, R. (2011).	C07
23-24	Cost-benefit analysis; Economic and financial CBA; payback period; Net present value (NPV)	Hubbard, G. & O'Brien A. P. (2021b); Dornbusch, R., Fischer, S.andStartz, R. (2011)	CO8
25-26	Internal rate of return (IRR); Economic feasibility of engineering undertakings	Hubbard, G. & O'Brien A. P. (2021b);Sloman et.al., (2018); Mankiw N.G (2007)	CO8
27-28	nature of an economic theory and the applicability of economic theories to the problems of developing countries	Todaro, M. P. (2020), Hubbard, G. & O'Brien, A. P. (2021b);Diulio, E (1997), Sloman et.al., (2018); Mankiw N.G (2007)	CO9

#### **11.** Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment: Continuous assessment any of the activities such as quizzes, assignment, presentation, etc. The scheme of the continuous assessment for the course will be declared on the first day of classes.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

## **12.** Distribution of Marks

Class Participation	10%
Continuous Assessment	20%
Final Examination	70%
Total	100%

# 13. Textbooks/References

Textbook:

- Hubbard, G. & O'Brien, A. P. (2020a). *Microeconomics*. Pearson. 8th Edition, https://www.pearson.com/en-us/subject-catalog/p/microeconomics/P200000005936?view=educator
- Hubbard, G. & O'Brien, A. P. (2021b). *Macroeconomics*. Pearson. 8th Edition, https://www.pearson.com/en-us/subject-catalog/p/macroeconomics/P200000005935/9780136713791.
- Sloman, J., Garratt, D. and Guest, J. (2018). *Economics*. Pearson.

#### References:

- Hubbard, G. & O'Brien, A. P. (2021c). *Economics*. Pearson. 8th Edition, https://www.pearson.com/en-us/subject-catalog/p/economics/P20000005930/9780136713951.
- Salvatore, D. (2008). Microeconomics: theory and applications. McGraw-Hill.
- Koutsoyiannis, A. (1975). *Modern Microeconomics*. Springer.
- Mankiw, N. G. (2007). *Principles of Microeconomics*.

- Mankiw, N.G. (2020). Principles of Macroeconomics. Cengage Learning.
- Dornbusch, R., Fischer, S. and Startz, R. (2011). Macroeconomics. McGraw-Hill.
- Diulio, E. (1997). *Macroeconomics: theory and problems*. McGraw-Hill.
- Todaro, M. P. (2021). *Economic Development*, 13th Edition, https://www.pearson.com/us/higher-education/program/Todaro-Economic-Development-13th-Edition/PGM100003100761.html.

# 20.60 Description of Course HUM 274

# Section A: General Information

- 1. Course Title Developing English Skills (Sessional)
- 2. Type of Course Non-Departmental Sessional, Compulsory
- 3. Offered to Department of Civil Engineering
- 4. Pre-requisite Course(s) None

# Section B: Course Details

5. Course Content (As approved by the Academic Council)

**Reading skill**: Skimming, scanning, predicting, inferring; Analysis and interpretation of texts; Comprehension from literary and non-literary texts.

**Writing skill**: Current approach to writing: Process and product; i) brain storming, ii) self-evaluation, iii) peer evaluation, iv) revision/rewriting, v) teacher's evaluation; Techniques of writing: i) comparison and contrast, ii) problem and solution, iii) cause and effect, iv) classification, v) illustration; Writing paragraph, essay and report. **Listening skill**: Listening to recorded texts, learning to take useful notes and answering questions.

**Speaking skill**: Dialogue in peer work; Participation in discussion and debate; Extempore speech; Narrating events; Story telling; Presentation.

- 6. Course Objectives
  - To enable learners to communicate effectively in academic and professional settings by developing their four core communication skills in English: listening, speaking, reading, and writing
  - To develop an appreciation for English literary texts among learners to improve their English language skills
- 7. Knowledge required

None

СО	CO Statement	Corresponding	Domains and	Delivery	Assessment
No.		PO(s)*	Taxonomy	Method(s) and	Tool(s)
	Upon successful		level(s)**	Activity(-ies)	
	completion of this course,				
	learners will be able to				
CO1	express ideas and opinions	PO(9); PO(10)	C2	Lectures;	Viva voce;
	fluently in English in social			Extempore	Presentation;
	and professional settings			speech;	Debate
				Q & A Forums	

CO	CO Statement	Corresponding	Domains and	Delivery	Assessment
No.		PO(s)*	Taxonomy	Method(s) and	Tool(s)
	Upon successful		level(s)**	Activity(-ies)	
	completion of this course,				
	learners will be able to				
CO2	follow speech, lectures, and		A1, A3;	Lectures;	Viva voce;
	arguments in common	PO(10)	P3	Listening	Presentation;
	English accent			practice;	Debate;
				Q & A Forums	Phonetics test
				Lectures; Group	Written exams;
CO3	understand and analyse	PO(10)	C4, C2	discussion on	Viva voce; Debate
	English literary texts and			short stories and	
	articles with ease			essay;	
				Q & A Forums	
				Lectures;	Written exams;
CO4	organize and synthesize	PO(10)	C5, A4	Writing practice	Assignment on
	ideas in a clear, detailed,	PO(10)		in peer groups;	presentation
	and well-structured text			Corrective	synopsis,
				feedback on	Report
				writing;	
				Q & A Forums	
		2010		Lectures;	Written exams;
CO5	<b>compose</b> paragraphs,	PO(10)	C6;	Writing	Report
	reports, and essays on		P7	paragraphs,	
	complex subjects			essays, and	
				reports in peer	
				group,	
				Q & A Forums	

*PO (1): Engineering knowledge; PO(2): Problem analysis; PO (3): Design/development of solutions; PO(4): Investigation; PO(5) Modern tool use; PO(6): The engineer and society; PO(7): Environment and sustainability; PO(8): Ethics; PO(9): Individual work and teamwork; PO(10): Communication; PO(11): Project management and finance; PO(12): life-long learning
**C -Cognitive: C1 – Knowledge, C2 – Comprehension, C3 – Application, C4 – Analysis, C5 – Synthesis, C6 – Evaluation A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing
P- Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

**9.** Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1							$\checkmark$													
CO-2							$\checkmark$													
CO-3							$\checkmark$													
CO-4							$\checkmark$													
CO-5							$\checkmark$													

# **10.** Lecture Plan

Class	Topics	References	Corresponding
No.			CO(s)
	Introduction to General English	Sharma & Mohan,	
1	Listening Practice	2000	CO1, CO2
1	Extempore Speech	Baker, 2008	
	Listening Practice	Handout	CO1 CO2
2	Picture Description	Baker, 2008	CO1, CO2
3	Listening Practice	Sharma & Mohan,	CO1, CO2
	Dialogue: Practice in Pair Work	2000	
		Baker, 2008	
		Imhoof & Herman,	
4	Introduction to Paragraph	2000	CO4, CO5
	Writing Paragraph in Peer Group	Hefferman, 2001	
~	Report: Types & Layout	Sharma & Mohan,	004 005
5	Assignment on Report	2000	CO4, CO5
	Selection of the Report Topic	<b>D</b> 1 0000	
	English Phonetics: A Gateway to Correct English	Baker, 2008	
	Pronunciation	Handout	
6	Phonetic Symbols & Their Applications, Phonetic	Sharma & Mohan,	002 002
6	Transcriptions	2000	CO2, CO3
	Listening Practice Discussion on Short Stories		
	Instruction for Selecting Topic of Presentation Test on Phonetics	Baker, 2008	
	TestonPhoneticsListeningPractice	Handout	CO2, CO3
7	Submission of Topic for Mock & Final Presentation	Tandout	02,005
	Discussion on Short Stories		
8	Debate Based on Short Stories	-	CO1
9	Mock Presentation	-	C01
10 &	Final Test on Presentation	-	
11	Submission of the Presentation Synopsis		CO1, CO4
	• •	-	
12	Final Test on Reading & Writing Skills		CO3, CO4, CO5
	-		
13 &		-	
14	Final Test on Speaking Skill		CO1, CO2

# 11. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment: Continuous assessment any of the activities such as quizzes, assignment, presentation, etc. The scheme of the continuous assessment for the course will be declared on the first day of classes.
- Final Examination: A comprehensive reading and writing skills test will be held at the end of the Term following the guideline of academic Council.
- **12.** Distribution of Marks

Class Participation10%Continuous Assessment56.67%(Test on phonetics, Presentation synopsis, Report, Final presentation, Speaking skill test)Final Examination33.33%(Reading and writing skill test)Total100%

# 13. Textbook/References

- 1. Textbook:
- 2. Reference:
- Sharma, R C., & Mohan, Krishna. *Commercial Correspondence and Report Writing*. New Delhi: Tata McGraw-Hill, 2000.
- Baker, Ann. Ship or Sheep? New Delhi: Cambridge University Press, 2008.
- G, Simon., & Swan, M. Effective Reading. Cambridge: CUP, 2001.
- Mosback, G., & Mosback, V. Practicing Faster Reading. Cambridge: CUP, 1999.
- Imhoof, M., & Herman, H. From Paragraph to Essay. Harlow: Longman, 2000.
- Thomson, A. J., & Martinet, A.V. A Practical English Grammar. New Delhi: OUP, 2001.
- Hefferman, AW James. Writing: A College Handbook. London: Norton, 2001.
- Fitikides, T.J. Common Mistakes in English. London: Longman, 2002.
- 14. Important University Policies:
- Rules and regulations for the undergraduate programmes:
   <u>https://www.buet.ac.bd/info/Academicinformation/RulesUndergradprogram</u>
- **15.** Important Departmental/Course Policies
  - Program Outcomes: Link to program outcomes
  - Learning Domains: Link to learning domains documents

# 20.61 Description of Course HUM 353

# Section A: General Information

- 1. Course Title Accounting
- 2. Type of Course Non-departmental, Theory, Compulsory
- **3.** Offered to Civil Engineering (CE)
- 4. Pre-requisite Course(s) None

# Section B: Course Details

5. Course Content (As approved by the Academic Council)

Financial Accounting: Objectives and importance of Accounting; Accounting as an information system; Basic accounting principles; Accounting equation; Recording system; Accounting cycle; Journal, Ledger, Trial Balance; Preparation of Financial statements considering adjusting entries; Financial statement analysis and interpretation.

Cost Accounting: Cost concepts and classification; Cost-volume-profit analysis; Contribution margin approach and its application, Break-even analysis, Target profit analysis, Operating leverage; Absorption costing vs Variable costing; Job order costing; Capital budgeting; Long run planning and control.

- **6.** Course Objectives
- to make students conversant about the basic concepts of financial, cost, and managerial accounting
- to demonstrate students different accounting methodologies, procedures, tools, and techniques
- to enable students preparing, analysing, and interpreting financial, cost and managerial information and taking appropriate decisions
- 7. Knowledge required Not Applicable

CO	CO Statement	Corresponding	Domains and	Delivery	Assessment
No.	Upon successful completion	PO(s)*	Taxonomy	Method(s) and	Tool(s)
	of the course the students		level(s)**	Activity(ies)	
	should be able to				
CO1	express the basic concepts of	PO(9)	C2,	Lectures,	Class tests;
	financial, cost and managerial		A1,	Powerpoint	Assignments;
	accounting		P1, P2	presentation	Quiz; Final Exam
CO2	identify and classify different	PO(9), PO(8)	C1, C4,	Lectures,	Class tests;
	cost, managerial and financial		A2,	Powerpoint	Assignments;
	information of any		P3	presentation	Quiz; Final Exam
	organization				
CO3	<b>illustrate</b> financial	PO(7), PO(8),	C3, C4, A3,	Lectures,	Class tests;
	information and analyse	PO(9), PO(12)	A4,	Powerpoint	Assignments;
	financial performance and		P3, P4	presentation	Quiz; Final Exam
	position of an entity				
CO4	facilitate and justify different	PO(11),	C5, C6,	Lectures,	Class tests;
	financial and investment	PO(12)	A4, A5	Powerpoint	Assignments;
	decisions			presentation	Quiz; Final Exam
CO5	demonstrate different costing	PO(9)	СЗ,	Lectures,	Class tests;
	and managerial methods and		A1, A2,	Powerpoint	Assignments;
	techniques		P1, P2	presentation	Quiz; Final Exam

CO6	plan effective costing tools	PO(11),	C5,	Lectures,	Class tests;
	and techniques for cost-	PO(12)	A3,	Powerpoint	Assignments;
	benefit analysis		P3, P4	presentation	Quiz; Final Exam
CO7	evaluate projects for benefit	PO(11),	C6,	Lectures,	Class tests;
	maximization.	PO(12)	A4,	Powerpoint	Assignments;
			P5	presentation	Quiz; Final Exam

*PO (1): Engineering knowledge; PO(2): Problem analysis; PO (3): Design/development of solutions; PO(4): Investigation; PO(5) Modern tool use; PO(6): The engineer and society; PO(7): Environment and sustainability; PO(8): Ethics; PO(9): Individual work and teamwork; PO(10): Communication; PO(11): Project management and finance; PO(12): life-long learning

**C -Cognitive: C1 – Knowledge, C2 – Comprehension, C3 – Application, C4 – Analysis, C5 – Synthesis, C6 – Evaluation. A-Affective: A1: Receiving; A2: Responding; A3:Valuing; A4: Organizing; A5: Characterizing. P-Psychomotor: P1: Perception; P2: Set; P3:Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1																				
CO-2																				
CO-3							K7													
CO-4							K7													
CO-5																				
CO-6							K7													
CO-7							K7													

## **10.** Lecture Plan

Lectures	Topics	References	Correspon ding CO(s)
1-2	Introduction to Financial Accounting; Introduction to Cost Accounting	Kieso(12 th Ed.) & Garrison (14 th Ed.)	CO1
3-4	Assumptions and Principles; Cost Concepts and Classification	Kieso(12 th Ed.) & Garrison (14 th Ed.)	CO1, CO2
5-6	Accounting as an information system, accounting cycle, Accounting equation; Cost Concepts and Classification	Kieso(12 th Ed.) & Garrison (14 th Ed.)	CO1, CO2
7-8	Transaction Analysis; Cost Sheet: Cost of Goods Manufactured, Cost of Goods Sold and Income Statement;	Kieso(12 th Ed.) & Garrison (14 th Ed.)	CO2, CO5
9-10	Recording Process; Absorption costing vs Variable costing	Kieso(12 th Ed.) & Garrison (14 th Ed.)	CO2, CO5
11-12	Recording Process; Absorption costing vs Variable costing	Kieso(12 th Ed.) & Garrison (14 th Ed.)	CO2, CO5

Lectures	Topics	References	Correspon ding CO(s)
13-14	Adjusting the Accounts; Cost Volume Profit Analysis	Kieso(12 th Ed.) & Garrison (14 th Ed.)	CO2, CO5, CO6
15-16	Adjusting the Accounts; Cost Volume Profit Analysis	Kieso(12 th Ed.) & Garrison (14 th Ed.)	CO2, CO5, CO6
17-18	Preparation of Financial Statements or Reports; Cost Volume Profit Analysis	Kieso(12 th Ed.) & Garrison (14 th Ed.)	CO3, CO5
19-20	Preparation of Financial Statements or Reports; Job order costing	Kieso(12 th Ed.) & Garrison (14 th Ed.)	CO3, CO5
21-22	Preparation of Financial Statements or Reports; Job order costing	Kieso(12 th Ed.) & Garrison (14 th Ed.)	CO3, CO5
23-24	Financial Statements/ Report analyse and Interpretation; Long run planning and control, Capital Budgeting	Kieso(12 th Ed.) & Garrison (14 th Ed.)	CO4, CO5, CO6, CO7
25-26	Financial Statements/ Report analyse and Interpretation; Capital Budgeting	Kieso(12 th Ed.) & Garrison (14 th Ed.)	CO4, CO5, CO6, CO7
27-28	Course Review		

### 11. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment: Continuous assessment any of the activities such as quizzes, assignment, presentation, etc. The scheme of the continuous assessment for the course will be declared on the first day of classes.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

#### 12. Distribution of Marks

<b>Class Participation</b>	10%
Continuous Assessment	20%
Final Examination	70%
Total	100%

- 13. Textbook/References
- Accounting Principles, 12th Edition, Jerry J. Weygandt, Paul D. Kimmel, Donald E. Kieso.
- <u>Managerial Accounting</u>, 14th Edition, Ray Garrison, Eric Moreen, Peter Brewer.
- <u>Cost Accounting: A Managerial Emphasis, 8th Edition, Charles T. Horngren, George Foster, Srikant M.</u> <u>Datar.</u>

# **Important University Policies:**

• Rules and regulations for the undergraduate programmes: https://www.buet.ac.bd/info/Academicinformation/RulesUndergradprogram

# **Important Departmental/Course Policies**

• Program Outcomes: Link to program outcomes

# **CO-Po mapping for all offered courses:**

Level	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
and	Name												
Term													
Level-2	Accounting						✓	✓	✓	✓		✓	✓
Term-I	_												

Complete this table with tick mark ( $\checkmark$ ). If required add/delete columns or rows

# 20.62 Description of Course HUM 355

# **Section A: General Information**

**1.** Course Title

Sociology Non-departmental, Theory, Optional

- Type of Course Non-departmental
   Offered to Civil Engineering
- 4. Pre-requisite Course(s) None
- Section B: Course Details
  - 5. Course Content (As approved by the Academic Council)

Nature, scope and perspectives of sociology; stages of social research and research methods; culture and civilization; socialization and personality development; globalization; media and individual; social organization and social problem; social stratification; industrial revolution, capitalism and socialism; work and economic life; environment and human activities; climate change and global risk; population and human society; urbanization and city development; social change and technology.

- 6. Course Objectives
  - to make students familiar with the basic concepts of society, community, and culture
  - to prepare students perceive the notion of social organization, social stratification, modernization, and globalization in a pragmatic fashion
  - to equip students with necessary social skills which will assist them in their future careers
- 7. Knowledge required

None

CO	CO Statement	Correspondin	Domains	Delivery	Assessment Tool(s)
No.	Upon the completion of the course the	g PO(s)*	and	Method(s) and	
	students should be able to		Taxonomy	Activity(-ies)	
			level(s)**		
1	define sociological imagination	PO(10)	C1	Lectures, Group	Assignment, Quiz,
			A1	Discussion,	Presentation, Class
			P1	Homework	Test, Term Final Exam.
2	compare sociology and other social	PO (12)	C2	Lectures, Group	Assignment, Quiz,
	sciences		A1	Discussion,	Presentation, Class
			P1	Homework	Test, Term Final Exam.

CO	CO Statement	Correspondin	Domains	Delivery	Assessment Tool(s)
No.	Upon the completion of the course the	g PO(s)*	and	Method(s) and	
	students should be able to		Taxonomy	Activity(-ies)	
			level(s)**		
3	solve social problems by applying	PO (9), PO	C6	Lectures, Group	Assignment, Quiz,
	sociological investigation	(11), PO (12)	A3	Discussion,	Presentation, Class
			P3	Homework	Test, Term Final Exam.
4	<i>illustrate</i> human society, culture,	PO(8), PO(12)	C2	Lectures, Group	Assignment, Quiz,
	social stratification, and social		A2	Discussion,	Presentation, Class
	mobility		P2	Homework	Test, Term Final Exam.
5	explain socialization, and social	PO(8), PO(9)	C2	Lectures, Group	Assignment, Quiz,
	organization		A2	Discussion,	Presentation, Class
			P1	Homework	Test, Term Final Exam.
6	distinguish crime, deviance, and	PO(8), PO(12)	C4	Lectures, Group	Assignment, Quiz,
	juvenile delinquency		A4	Discussion,	Presentation, Class
			P2	Homework	Test, Term Final Exam.
7	<i>debate</i> on industrial revolution,	PO(8), PO(9)	C4	Lectures, Group	Assignment, Quiz,
	capitalism, and globalization		A4	Discussion,	Presentation, Class
			P2	Homework	Test, Term Final Exam.
8	<i>define</i> demographic variables	PO(10),	C1	Lectures, Group	Assignment, Quiz,
		PO(12)	A1	Discussion,	Presentation, Class
			P1	Homework	Test, Term Final Exam.
9	<i>recall</i> the growth of cities from	PO(11),	C1	Lectures, Group	Assignment, Quiz,
	sociological point of view	PO(12)	A1	Discussion,	Presentation, Class
			P1	Homework	Test, Term Final Exam.
10	interpret, environment, climate, and	PO(7)	C3	Lectures, Group	Assignment, Quiz,
	social change		A2	Discussion,	Presentation, Class
			P3	Homework	Test, Term Final Exam.

*PO (1): Engineering knowledge; PO(2): Problem analysis; PO (3): Design/development of solutions; PO(4): Investigation; PO(5) Modern tool use; PO(6): The engineer and society; PO(7): Environment and sustainability; PO(8): Ethics; PO(9): Individual work and teamwork; PO(10): Communication; PO(11): Project management and finance; PO(12): life-long learning

**C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1																				
CO-2																				
CO-3							1													
CO-4							✓													
CO-5							1													
CO-6							1													
CO-7							1													
CO-8																				
CO-9																				
CO-10							1													

# **10.** Lecture Plan

Class	Topics	References	Corresponding CO(s)
No.			
1-2	Introduction to sociology, developing	Schaefer, R.T. (2018),	CO1, CO2
	sociological imagination, sociology and other	Mills, C. W. (2000)	
	social sciences		
3–4	Sociological research: Methods and procedures	Schaefer, R.T. (2018)	CO3
5–6	Social stratification and social mobility	Schaefer, R.T. (2018),	CO4
		Macionis, J.J. (2008)	
7–8	Culture and human society	Schaefer, R.T. (2018),	CO4
		Macionis, J.J. (2008)	
9–10	Socialization and social organization	Macionis, J.J. (2008),	CO5
		Giddens, A. (2009)	
11-12	Deviance, crime, and juvenile delinquency	Schaefer, R.T. (2018)	CO6
13–14	Industrial revolution	Schaefer, R.T. (2018),	CO7
		Giddens, A. (2009)	
15–16	Globalization and modern life	Giddens, A. (2009)	CO7
17–18	Population and society	Schaefer, R.T. (2018)	CO8
19–20	Demography, and human migration	Schaefer, R.T. (2018)	CO8
21-22	Urbanization and urbanism: the growth of cities.	Schaefer, R.T. (2018)	CO9
23–24	Human society, environment	Macionis, J.J. (2008)	CO10
25-26	Technology and social change	Macionis, J.J. (2008)	CO10
27–28	Development of capitalism and social inequality	Schaefer, R.T. (2018),	CO7, CO4
		Giddens, A. (2009)	

- 11. Assessment Strategy
- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment: Continuous assessment any of the activities such as quizzes, assignment, presentation, etc. The scheme of the continuous assessment for the course will be declared on the first day of classes.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.
- 12. Distribution of Marks

Class Participation	10%
Continuous Assessment	20%
Final Examination	70%
Total	100%

# **13.** Textbook/References

- 3. Richard T. Schaefer, 'Sociology: A Brief Introduction', 13th Edition, McGraw-Hill Education, New York, USA (2018).
- 4. Anthony Giddens, 'Sociology', 6th Edition, Polity Press, UK (2009).
- 5. Mills, C. W. (2000). The Sociological Imagination (40th ed.). New York: Oxford University Press. (Original work published 1959).
- 6. Macionis, J.J. (2008). Sociology: A Global Introduction (4th ed.). London: Pearson Education.

# 20.63 Description of Course HUM 375 Section A: General Information

- 1. Course Title
- 2. Type of Course
- 3. Offered to

- Government Optional, Theory, Non-departmental Department of Civil Engineering None
- **4.** Pre-requisite Course(s)

# Section B: Course Details

5. Course Content (As approved by the Academic Council)

Basic Concepts of Government and Politics: forms of government; organs of government- legislature, executive, judiciary; functions of government; democracy; socialism; welfare state; bureaucracy; good governance; e-government.

Government and Politics of Bangladesh: major administrative reforms; major amendments to the constitution- nonparty caretaker government; local government; public policies; non-government organizations (NGOs); managing development project- planning, implementation, monitoring and evaluation; constitutional bodies- election commission, comptroller and auditor general, public service commission; foreign policy of Bangladesh.

Regional and International Organizations: SAARC, ASEAN, UNO

# 6. Course Objectives

This course has been designed for undergraduate students

- 1. to develop understanding on political institutions and processes including state, citizen, rights, forms and organs of government, bureaucracy, and governance
- 2. to provide knowledge on the government and politics of Bangladesh
- 3. To enhance understanding on selected international organizations which will make them responsible global citizen
- 7. Knowledge required

Not Applicable

CO No.	<b>CO Statement</b> At the end of the course, and having completed the essential readings and activities, students would be able to:	Correspo nding PO(s)*	Domains and Taxonomy level(s)	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
CO1	<b>understand</b> the political institutions and processes including state, forms and organs of government	PO(6)	C1, C2; P1	Lectures; power point presentations; Home work	Class test; assignment; final exam
CO2	<b>achieve</b> basic knowledge on accountability, rule of law and other institutional arrangements of a state and <b>understand</b> the role of national and international actors	PO(6); PO(9); PO(10)	C1, C2; A3	Lectures; power point presentations; Home work	Class test; assignment; final exam

CO No.	<b>CO Statement</b> At the end of the course, and having completed the essential readings and activities, students would be able to:	Correspo nding PO(s)*	Domains and Taxonomy level(s)	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
	and factors in ensuring good governance				
CO3	<b>critically analyze</b> the issues and challenges of Bangladesh government and politics in the light of glorious history	PO(6), PO(9)	C4, C5, C6 A3 P1, P6,	Lectures; power point presentations; Group Discussion; Home work	Class test; extempore test; assignment; final exam
CO4	<b>develop</b> understanding of the key actors, institutions and processes of administrative systems, public policy process, constitutional bodies, NGOs, local government and project management	PO(6), PO(7)	C2, C5, C6 A3 P6	Lectures; power point presentations; Group discussion; Home work	Class test; extempore test; assignment; final exam
CO5	<b>know</b> the origins and functions of international organizations to perform as responsible global citizen	PO(6), PO(7), PO(9)	C1, C2, C3 A3 P6	Lectures; power point presentations; Home work	Class test; assignment; final exam

*PO (1): Engineering knowledge; PO(2): Problem analysis; PO (3): Design/development of solutions; PO(4): Investigation; PO(5) Modern tool use; PO(6): The engineer and society; PO(7): Environment and sustainability; PO(8): Ethics; PO(9): Individual work and teamwork; PO(10): Communication; PO(1): Project management and finance; PO(12): life-long learning **C -Cognitive: C1 – Knowledge, C2 – Comprehension, C3 – Application, C4 – Analysis, C5 – Synthesis, C6 – Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P- Psychomotor: P1: Perception; P2: Set; P3:Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

# 9. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

COs	K1	K2	K3	K4	K5	K6	K7	K8	P1	P2	P3	P4	P5	P6	P7	A1	A2	A3	A4	A5
CO-1																				
CO-2																				
CO-3							1													
CO-5							1													

# **10.** Lecture Plan

Class No.	Topics	References	Corresponding CO(s)
1-5	Introduction to government and politics, Concept of society and state, Sovereignty, Constitution, Citizenship: Rights and Duties	Rodee and others (1957), Dyck (2006), Rhodes and others (2008), Shively (2011)	CO1
6-8	Forms of Government: Democracy, Dictatorship, Parliamentary, Presidential, Socialism, Marxism	Dyck (2006), Rhodes and others (2008), Hasanuzzaman (1998),	CO1

Class No.	Topics	References	Corresponding CO(s)
		Shively (2011), Harold (1967)	
9-10	Organs of Government Legislature, Executive Judiciary	Dyck (2006), Shively (2011),	CO1
11	Bureaucracy: Definition and Function	Panandiker (2000)	CO2
12-13	Good Governance: Government, Private Sector, Civil Society	Levi-Faur (2012), Sobhan (2000), Aminuzzamaz (2006), Panandiker (2000), Hye (2000),	CO2
14-19	Historical and political background of Bangladesh: Language Movement, Six Point Movement, Mass Upsurge of 1969, Impact of 1970s Election and Emergence of Bangladesh	GoB (2020), Choudhury (1994), Jahan (1977), Rahman (2020)	CO3
20-21	Constitution of Bangladesh, Major amendments	GoB (2020)	
22	Local Government	Siddiqui (2008), Ali (1979), GoB (2014), Ali, Maqsood (1981)	CO4
23-24	Public policy making, Non-government Organizations	Birkland. T. A. (2014)	CO4
25	Development project management	Larson. E. W., & Gray. C. F. (2011)	CO4
26	Constitutional Bodies	GoB (2020), Choudhury, D. (1994)	CO4
27	Foreign Policy of Bangladesh	GoB (2020)	CO4, CO5
28	United Nations Organizations	Annan (2002)	CO5

# **11.** Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment: Continuous assessment any of the activities such as quizzes, assignment, presentation, etc. The scheme of the continuous assessment for the course will be declared on the first day of classes.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

# **12.** Distribution of Marks

Class Participation	10%
Continuous Assessment	20%
Final Examination	70%
Total	100%

# 13. Textbooks/References

Textbook:

- Dyck, R. (2006). Studying Politics: An Introduction to Political Science, Nashville: Nelson Thomson.
- Rhodes, R. A., Binder, S. A., & Rockman, B. A. (2008). The Oxford Handbook of Political Institutions, Oxford: Oxford University Press
- Shively, W. P. (2011). Power & Choice: An Introduction to Political Science, New York: McGraw-Hill
- Larson, E. W., & Gray, C. F. (2011). Project management: The managerial process (5Th edition)., New York: McGraw-Hill Irwin Publishers
- Birkland, T. A. (2014). An introduction to the policy process: Theories, concepts and models of public policy making, London: Routledge.

# References

- Carlton Clymer Rodee, Totton James Anderson and Carl Quimby Christol (1957), Introduction to Political Science, New York: McGraw-Hill Book Company.
- Harold, J. L. (1967), A Grammar of Politics, London: George Allen and Urwin Ltd
- Islam, Sirajul (2018), History of Bangladesh, Dhaka: Asiatic Society of Bangladesh
- Jahan Rounaq (1977), Pakistan: Failure in National Integration, Dhaka: UPL
- Choudhury, D. (1994), Constitutional Development in Bangladesh, Oxford University Press
- Hasanuzzaman, A. M. (1998), Role of Opposition in Bangladesh Politics, Dhaka: UPL
- Panandiker, P.V. (ed.) (2000), Problems of Governance in South Asia, Dhaka: UPL.
- Sobhan, R. (2000), Towards a Theory of Governance, Dhaka: UPL.
- Levi-Faur, D. (2012), The Oxford Handbook of Governance, Oxford: Oxford University Press.
- Kamal Siddiqui (2008), Local Government of Bangladesh, Dhaka: UPL
- Aminuzzamaz. S. A (2006), Governance and Development: Bangladesh nand Regional Experiences, Dhaka: Shrabon Prokashani
- Hye. H. A (2000), Governance: South Asian Perspective, Dhaka: UPL
- GOB. (2014) The Constitution of the Peoples Republic of Bangladesh. Dhaka: Legislative and Parliamentary Affairs Division
- Annan, K (2002), Strengthening of the United Nations: An Agenda for further Change, New York: United Nations General Assembly.
- Muldoon, J and Muldoon, J. P. (eds) (1999), Multilateral Diplomacy and the United Nations Today, New York: Westview Press, Boulder Colo.

# 20.64 Description of Course MATH 137

# **SECTION A: General Information**

1.	Course Number	MATH 137
	Course Title	Differential and Integral Calculus, Matrices
	Credit (Contact) Hours	3.0 (3.0)
2.	Level and Term (Section)	Level-1, Term-1
	Academic Session	July 2021
3.	Type of Course	Core Course
	Offered to	Department of CE
4.	Pre-requisite Course(s)	None
5.	Course Website	https://math.buet.ac.bd
6.	Lecture Schedule	Xday (00:00-00:00 am)
		Yday (00:00-00:00 am)
		Zday (00:00-00:00 am)
7.	Important Dates	For important dates and examination schedules and latest updates,
		please follow the course website

#### 8. Course Teacher(s)

Name (Initials):	Office:	Email:	Consultation Hour(s)
Teacher 1	Х	x@math.buet.ac.bd	Xday (00:00-00:00 am)
Teacher 2	Y	y@math.buet.ac.bd	Yday (00:00-00:00 am)

#### **SECTION B: Course Details**

9. Course Content (As approved by the Academic Council)

- Differential Calculus: Limits, continuity and differentiability, Successive differentiation and Leibnitz's theorem, Expansion of functions, indeterminate forms, Partial differentiation, Euler's theorem, Tangent and Normal, maximum and minimum values of functions of single variable.
- Integral Calculus: Integration by parts, standard integrals, Successive reduction, Definite integrals, Beta function and Gamma function. multiple integrals.
- Matrices: Definition of matrices, Algebra of matrices, inverse of matrix, Elementary transformations of matrices and rank. Solution of linear equations, Eigenvalues and eigenvectors, Cayley-Hamilton theorem.

#### **10.** Course Objectives

- To provide the appropriate tools of calculus to solve applied problems.
- To provide the standard methods of indefinite and definite integrals with applications.
- To understand the fundamental properties of matrices including determinants, inverse matrices, matrix factorizations, eigenvalues, eigenvectors along with their applications; understanding the basic concepts of the system of linear equations, apply the matrix calculus to solve linear systems of equations.

#### 11. Knowledge required

Familiarity with basic properties of set theory and function; fundamental concepts of pre-calculus and preliminary knowledge to solve algebraic and transcendental equations.

CO No.	CO Statement	Correspondin g PO(s)*	Domains and Taxonomy level(s)	Delivery Method(s) and Activity(- ies)	Assessment Tool(s)
1	<b>Explain</b> the fundamental concepts of limits, derivatives, and expansion of functions.	PO(a)	C3	Lectures, Homework	Written exams, Assignment
2	<b>Apply</b> the appropriate tools of calculus to solve applied problems.	PO(a)	C3	Lectures, Homework	Written exams, Assignment
3	<b>Develop</b> rigorous knowledge to solve indefinite and definite integrals and multiple integrals	PO(b)	C3	Lectures, Homework	Written exams, Assignment
4	<b>Demonstrate</b> the idea of rank, eigen values and eigen vector space	PO(b)	C3	Lectures, Homework	Written exams, Assignment

#### 12. Course Outcomes

*PO (a): Engineering knowledge; PO(b): Problem analysis; PO (c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning.

**The cognitive domain (C) and its Taxonomy Levels (1 to 6) aim to develop the mental skills and the acquisition of knowledge of the individual. The cognitive domain encompasses of six categories which include:

C1- knowledge/remember; C2-understand/explain/estimate; C3-apply; C4-analysis; C5- evaluate/judge/verify; C6-synthesis/design/create/construct.

## 13. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment: Continuous assessment in any of the activities such as quizzes, assignment, presentation, etc. The scheme of the continuous assessment for the course will be declared on the first day of classes.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

# 14. Distribution of Marks

Class Participation	10%
Continuous Assessment	20%
Final Examination	70%
Total	100%

# 15. Textbooks

- Calculus (10th edition) by Howard Anton, Irl Bivens and Stephen Davis.
- Integral Calculus by A.K. Hazra.
- Advanced Engineering Mathematics by Erwin Kreyszig (Wiley).
- Elementary Linear Algebra by Howard Anton and Chris Rorres

# 16. Reference Books

- Differential and Integral Calculus by P.N. Chatterjy.
- Calculus (10th edition) by Howard Anton, Irl Bivens and Stephen Davis.
- Differential and integral Calculus by B C Das & B N Mukherjee
- Theory and Problems of Linear Algebra (Schaum's Outline Series) by Seymour Lipschutz

**N.B.** Besides going through relevant topics of the textbook, it is strongly advised that the students follow the class lectures and discussions regularly for a thorough understanding of the topics.

# 17. Lecture Plan

#### Weekly schedule: Differential Calculus

Week	Topics	Teacher's Initial/Remarks
Week-1	Limits	
Week-2	continuity and differentiability	
Week-3	continuity and differentiability	
Week-4	Successive differentiation and Leibnitz's theorem	
Week-5	Class Test	
	Expansion of functions	
Week-6	Expansion of functions	
Week-7	indeterminate forms	
Week-8	Partial differentiation, Euler's theorem,	
Week-9	Tangent and Normal	
Week-10	Tangent and Normal	
Week-11	Tangent and Normal	
Week-12	maximum and minimum values of functions of single variable.	
Week-13	maximum and minimum values of functions of single variable.	
Week-14	class test	
	Review class	

# Weekly schedule: For Integral Calculus

Week	Topics	Teacher's Initial/Remarks
Week-1	Integration by parts	
Week-2	Integration by parts	
Week-3	standard integrals	
Week-4	standard integrals	
Week-5	Successive reduction	
Week-6	Successive reduction	
Week-7	Definite integrals	
Week-8	Definite integrals	
Week-9	Class Test	
	Beta function and Gamma function	
Week-10	Beta function and Gamma function	
Week-11	multiple integrals.	
Week-12	multiple integrals.	
Week-13	multiple integrals.	
Week-14	Review class	

# Weekly schedule: For Matrices

Week	Topics	Teacher's
		Initial/Remarks
Week-1	Definition of matrices	
Week-2	Definition of matrices	
Week-3	Algebra of matrices	
Week-4	inverse of matrix	
Week-5	inverse of matrix	
Week-6	Elementary transformations of matrices and rank	
Week-7	Elementary transformations of matrices and rank	
Week-8	Solution of linear equations	
Week-9	Solution of linear equations	
Week-10	Class Test	
	Eigenvalues and eigenvectors	
Week-11	Eigenvalues and eigenvectors	
Week-12	Eigenvalues and eigenvectors	
Week-13	Cayley-Hamilton theorem.	
Week-14	Review class	

# **18. Important University Policies:**

• Rules and regulations for the undergraduate programmes: https://www.buet.ac.bd/info/Academicinformation/RulesUndergradprogram

# 20.65 Description of Course MATH 139

# SECTION A: General Information

1.	Course Number	MATH 139
	Course Title	Differential Equations and Statistics
	Credit (Contact) Hours	3.0 (3.0)
2.	Level and Term (Section)	Level-1, Term-2
	Academic Session	July 2022
3.	Type of Course	Core Course
	Offered to	Department of CE

4. **Pre-requisite Course(s)** 

4.	Pre-requisite Course(s)	None
5.	Course Website	https://math.buet.ac.bd
6.	Lecture Schedule	Xday (00:00-00:00 am)
		Yday (00:00-00:00 am)
		Zday (00:00-00:00 am)
7.	Important Dates	For important dates and examination schedules and latest updates,
		please follow the course website

#### 8. Course Teacher(s)

Name (Initials):	Office:	Email:	Consultation Hour(s)
Teacher 1	Х	x@math.buet.ac.bd	Xday (00:00-00:00 am)
Teacher 2	Y	y@math.buet.ac.bd	Yday (00:00-00:00 am)

#### **SECTION B: Course Details**

#### 9. Course Content (As approved by the Academic Council)

Ordinary Differential Equations: Formation of differential equations. Solution of first order differential equations by various methods. Solution of differential equations of first order but higher degree. Solution of general linear differential equations of second and higher order with constant coefficients. Solution of Euler's homogeneous linear differential equations.

Partial Differential Equations: Introduction. Linear and nonlinear first order differential equations. Standard forms. Linear equations of higher order. Equations of the second order with variable coefficients. Statistics: Measures of central tendency and standard deviation. Moments, skewness and kurtosis. Elementary probability theory and discontinuous probability distribution. Continuous probability distributions, e.g. normal and exponential.

#### 10. Course Objectives

- To provide the basic concept of differential equations, their solution tecniques along with their physical significance.
- To understand fundamental concepts in probability and statistics. To enable students to apply rules and • algorithm of probability and statistics in various logical problems. To enable students maneuver mathematical probabilistic models for different problems, to analyze them and to interpret the results.

## 11. Knowledge required

Familiarity with basic properties of set theory and function; fundamental concepts of pre-calculus, differential and integral calculus; and preliminary knowledge to solve algebraic and transcendental equations.

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	<b>Formulate</b> differential equations to solve 1 st and higher order linear differential equations.	PO(b)	C5	Lectures, Homework	Written exams; assignment
2	<b>Apply</b> the appropriate methods to solve the linear and non-linear differential equations.	PO(a)	C3	Lectures, Homework	Written exams; assignment
3	<b>Develop</b> rigorous knowledge to solve linear and non-linear partial	PO(c)	C6	Lectures, Homework	Written exams; assignment

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
	differential equations of Physical Models				
4	<b>Interpret</b> the basic idea of statistics, probability theory, hypothesis testing and regression analysis.	PO(c)	C3	Lectures, Homework	Written exams; assignment

*PO (a): Engineering knowledge; PO(b): Problem analysis; PO (c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning.

**The cognitive domain (C) and its Taxonomy Levels (1 to 6) aim to develop the mental skills and the acquisition of knowledge of the individual. The cognitive domain encompasses of six categories which include:

# C1- knowledge/remember; C2-understand/explain/estimate; C3-apply; C4-analysis; C5-evaluate/judge/verify; C6- synthesis/design/create/construct.

#### 13. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment: Continuous assessment in any of the activities such as quizzes, assignment, presentation, etc. The scheme of the continuous assessment for the course will be declared on the first day of classes.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

#### **14. Distribution of Marks**

Class Participation	10%
Continuous Assessment	20%
Final Examination	70%
Total	100%

#### 15. Textbooks

- Elementary Differential Equations by Earl D. Rainville and Phillip E. Bedient.
- A First Course in Differential Equations with Modeling Applications by Dennis G. Zill.
- Ordinary and Partial Differential Equations by M.D. Raisinghania
- Elements of Partial Differential Equations by Ian Naismith Sneddon.
- Probability and Statistics for Engineers and Scientists Walpole, Myers, Myers, and Ye, Pearson Education, Inc., Ninth Edition, 2012.

**N.B.** Besides going through relevant topics of the textbook, it is strongly advised that the students follow the class lectures and discussions regularly for a thorough understanding of the topics.

# 16. Reference Books

- Differential Equations with Applications by M. M. K. Chowdhury.
- Advanced Engineering Mathematics by Erwin Kreyszig (Wiley)

- Introduction to Partial Differential Equations and Boundary Value Problems by Rene Dennemeyer.
- Element of Probability and Statistics, By Frank L. Wolf
- Probability and Statistics with Applications, By Y. Leon Maksoudian
- Probability and Statistics for Engineers, By Erwin Miller & John E. Freund.

# 17. Lecture Plan

# **For Differential Equations**

Weekly plan for course content and mapping with COs		
Week	Topics	
Week-1	Introduction to differential equations.	
Week-2	Degree and order of ordinary differential equations, Formation of differential equations.	
Week-3	Solution of first order differential equations by various methods (separable form and reducible to separable form).	
Week-4	Solution of first order differential equations by various methods (homogeneous form and reducible to homogeneous form).	
Week-5	Solution of first order differential equations by various methods (linear differential equation and Bernoulli's differential equation).	
Week-6	Solution of first order differential equations by various methods (exact differential equation, non-exact differential equation and integrating factor by inspection).	
Week-7	Solution of first order differential equations by various methods (exact differential equation, non-exact differential equation and integrating factor by inspection).	
Week-8	Application of first order differential equations, Solution of differential equations of first order but higher degree.	
Week-9	Solution of general linear equations of second and higher order with constant coefficients (homogeneous and non-homogeneous).	
Week-10	Solution of general linear equations of second and higher order with constant coefficients (homogeneous and non-homogeneous).	
Week-11	Solution of general linear equations of second and higher order with constant coefficients (homogeneous and non-homogeneous).	
Week-12	Solution of homogeneous linear equations (Cauchy-Euler equations).	
Week-13	Solution of homogeneous linear equations (Cauchy-Euler equations).	
Week-14	Review class	

# For Partial Differential Equations

***		
Week	Topics	
Week-1	Introduction to partial differential equations.	
Week-2	Introduction to partial differential equations.	
Week-3	Linear partial differential equations of first order.	
Week-4	Linear partial differential equations of first order.	
Week-5	Non-linear partial differential equations of first order.	
Week-6	Non-linear partial differential equations of first order.	
Week-7	Standard forms.	
Week-8	Linear equations of higher order.	
Week-9	Linear equations of higher order.	
Week-10	Linear equations of higher order.	
Week-11	Linear equations of higher order.	
Week-12	Linear equations of higher order.	
Week-13	Equations of the second order with variable coefficients.	
Week-14	Review class	

# For Statistics

Week	Topics
Week-1	Measures of central tendency.
Week-2	Measures of central tendency, Standard deviation.
Week-3	Moments, skewness and kurtosis.
Week-4	Moments, skewness and kurtosis.
Week-5	Elementary probability theory, definitions, Conditional probability, partitions, total probability, Bayes' theorem.
Week-6	Discontinuous probability distributions.
Week-7	Continuous probability distributions.
Week-8	Continuous probability distributions.
Week-9	Characteristics of distributions. Elementary sampling theory. Estimation.

Week	Topics
Week-10	Hypothesis testing.
Week-11	Hypothesis testing.
Week-12	Regression analysis.
Week-13	Regression analysis.
Week-14	Review class

# 20.66 Description of Course MATH 237

#### **SECTION A: General Information** 1. Course Number **MATH 237 Course Title** Laplace Transform and Vector Analysis **Credit (Contact) Hours** 3.0 (3.0) 2. Level and Term (Section) Level-2, Term-1 Academic Session July 2021 3. Type of Course Core Course Offered to Department of Civil Engineering 4. **Pre-requisite Course(s)** None 5. Course Website https://---.math.buet.ac.bd 6. Lecture Schedule Xday (00:00-00:00 am) Yday (00:00-00:00 am) Zday (00:00-00:00 am) 7. Important Dates For important dates and examination schedules and latest updates, please follow the course website

#### 8. Course Teacher(s)

Name (Initials):	Office:	Email:	Consultation Hour(s)
Teacher 1	Х	x@math.buet.ac.bd	Xday (00:00-00:00 am)
Teacher 2	Y	y@math.buet.ac.bd	Yday (00:00-00:00 am)

#### **SECTION B: Course Details**

9. Course Content (As approved by the Academic Council)

**Laplace Transforms:** Definition of Laplace transforms. Sufficient conditions for existence of Laplace transforms. Inverse Laplace transforms. Laplace transforms of derivatives. The unit step function. Periodic function. Some special theorems on Laplace transforms. Partial fraction. Solution of differential equations by Laplace transforms.

**Vector Analysis:** Scalars and vectors, equality of vectors. Addition and subtraction of vectors. Multiplication of vectors by scalars. Position vector of a point. Scalar and vector product of two vectors and their geometrical interpretation. Triple and multiple product of vectors. Linear dependence and independence of vectors. Definition of line, surface and volume integrals. Gradient, divergence and curl of point functions. Gauss's theorem, Stokes' theorem, Green's theorem and their applications.

#### **10.** Course Objectives

- To understand the properties of Laplace transform, perform operations on Laplace transform and inverse Laplace transform, solve linear differential equations with constant and variable coefficients as well as discontinuous input functions using the Laplace transform.
- To develop better understanding of key concepts concerning scalar and vector fields. Gain deeper knowledge of multivariate differentiation operations such as Gradient, Divergent and Curl. Master the

Integral Theorems at the core of Vector Analysis. Learn the utility of Vector Analysis by learning its relevance to equations describing the dynamics of electric and magnetic fields.

# 11. Knowledge required

Familiarity with basic properties of vectors, set, real number system and function; fundamental concepts of precalculus, differential and integral calculus; and preliminary knowledge to solve algebraic equation, ordinary and partial differential equations.

# 12. Course Outcomes

CO No.	CO Statement	Corresponding PO(s)*	Domains and Taxonomy level(s)	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
1	Understand the concepts Laplace and inverse Laplace transform to solve differential equations	PO(a)	C2	Lectures, Homework	Written exams; assignment
2	<b>Demonstrate</b> the concepts of vector algebra, calculus, Gradient, Divergent and Curl.	PO(b)	C3	Lectures, Homework	Written exams; assignment
3	<b>Apply</b> the concepts of multiple integrals and various vector integral theorems for solving different types of problems	PO(a)	C3	Lectures, Homework	Written exams; assignment

# *PO (a): Engineering knowledge; PO(b): Problem analysis; PO (c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning.

**The cognitive domain (C) and its Taxonomy Levels (1 to 6) aim to develop the mental skills and the acquisition of knowledge of the individual. The cognitive domain encompasses of six categories which include:

C1- knowledge/remember; C2-understand/explain/estimate; C3-apply; C4-analysis; C5- evaluate/judge/verify; C6-synthesis/design/create/construct.

#### 13. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment: Continuous assessment in any of the activities such as quizzes, assignment, presentation, etc. The scheme of the continuous assessment for the course will be declared on the first day of classes.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

#### 14. Distribution of Marks

Class Participation	10%
Continuous Assessment	20%
Final Examination	70%
Total	100%

# 15. Textbooks

- Theory and Problems of Laplace Transforms, Schaum's outline Series, Murray R. Spiegel.
- Advanced Engineering Mathematics by Peter V. O'Neil.
- Advanced Engineering Mathematics by Erwin Kreyszig, Herbert Kreyszig and Edward J. Norminton.
- Vector Analysis with Applications by Md. Ali Ashraf and Md. Abdul KhaleqHazra.

#### 16. Reference books

• Schaum's Outline of Theory and Problems of Vector Analysis by Murray R. Spiegel.

- Vector Analysis by M. D. Raisinghania.
- Advanced Engineering Mathematics, S. Chand Publishing, H. K. Dass.

**N.B.** Besides going through relevant topics of the textbook, it is strongly advised that the students follow the class lectures and discussions regularly for a thorough understanding of the topics.

# 17. Lecture Plan

# Laplace Transform

Week	Topics	
Week-1	Introduction to Laplace transform	
Week-2	Elementary transformation and properties	
to 3		
Week- 4	Laplace transform of derivatives, unit step and periodic functions	
to 6		
Week-7	Special theorems of Laplace transform, Inverse Laplace transform,	
to 8	Convolution	
Week- 9	Solution of differential equation by Laplace transforms	
to 11		
Week-12	Evaluation of integrals by Laplace's transforms.	
to 13		
Week-14	Review Class	

# **Vector Analysis**

Week	Topics
Week-1	Multiple product of vectors.
Week-2	Linear dependence and Independence of vectors.
Week-3	Differentiation and integration of vectors.
Week-4	Solving problems related to differentiation and integration of vector functions.
Week-5	Gradient of scalar functions, divergence and curl of vector functions.
Week-6	Integral forms of gradient, divergence and curl.
Week-7	Class Test
Week-8	Line integrals.
Week-9	Green's theorem and solving problems related to this theorem.
Week-10	Surface and volume integrals.
Week-11	Gauss's theorem and solving problems related to this theorem.
Week-12	Stokes theorem and solving problems related to this theorem
Week-13	Class Test
Week-14	Review Class

## 20.67 Description of Course PHY 101

## **SECTION A: General Information**

1	Course Title	: Physical Optics, Waves & Oscillations and Heat & Thermodynamics
2	Type of Course	: Non-departmental course
2	Offered to	Department of Civil Engineering

- **3** Offered to : Department of Civil Engineering
- 4 **Pre-requisite Course(s)** : N/A

## **SECTION B: Course Details**

### 1. Course Content (As approved by the Academic Council)

**Physical Optics:** Theories of light; Interference of light, Young's double slit experiment, Displacement of fringes and its uses, Fresnel Bi-prism, Interference at wedge shaped films, Newton's rings, Interferometers; Diffraction of light; Fresnel and Fraunhoffer diffraction, Diffraction by single slit, Diffraction from a circular aperture, Resolving power of optical instruments, Diffraction at double slit and N-slits-diffraction grating; Polarization; Production and analysis of polarized light, Brewster's Law, Malus Law, Polarization by double refraction, Retardation plates, Nicol prism, Optical activity, Polarimeters, Polaroid.

**Waves & Oscillations:** Differential equation of a Simple Harmonic Oscillator, total energy and average energy, Combination of simple harmonic oscillations, Lissajous figures, spring- mass system, Calculation of time period of torsional pendulum, Damped oscillation, Determination of damping co-efficient. Forced oscillation, Resonance, Two-body oscillations, Reduced mass, Differential equation of a progressive wave, Power and intensity of wave motion, Stationary wave, Group velocity and phase velocity, Architectural acoustics, Reverberation and Sabine's formula.

**Heat & Thermodynamics**: Principle of temperature measurements: Platinum resistance thermometer, Thermoelectric thermometer, Pyrometer; Kinetic theory of gases: Maxwell's distribution of molecular speeds, Mean free path, Equipartition of energy, Brownian motion, Van der Waal's equation of state, Review of the First Law of Thermodynamics and its application, Reversible and irreversible processes, Second Law of thermodynamics, Carnot cycle; Efficiency of heat engines, Carnots theorem, Entropy and disorder, Thermodynamic functions, Maxwell relations, Clausius-Clapeyron equation, Gibbs phase rule, Third Law of Thermodynamics.

## 2. Course Objectives

Objective 1: To develop logical and critical thinking with scientific knowledge of physical optics, waves & oscillation, and heat & thermodynamics required for the students of civil engineering.

Objective 2: To understand the different laws of Physics associated with physical optics, waves & oscillation, and heat & thermodynamics, and apply them to solve the real life problems.

3. Knowledge required

Insert previous knowledge requirements: N/A

## 4. Course Outcomes

CO No.	CO Statement	Corresponding PO(s)*	Domains and	Delivery Method(s) and	Assessment Tool(s)
110.	At the end of the course, a student should be able to		Taxonomy level(s)**	Activity(-ies)	
CO1	Describe the basic laws of Physics related to physical optics, waves & oscillation, and heat & thermodynamics to express different phenomena in the physical world.	PO(a)	Cl	e.g., Lectures, Homework	e.g., Written exams; viva voce; presentation; assignment
CO2	Explain the fundamental concepts and theories of physical optics, waves & oscillation, and heat & thermodynamics applicable for different physical conditions.	PO(a)	C2	e.g., Lectures, Homework	e.g., Written exams; viva voce; presentation; assignment
CO3	Apply the relevant laws of physics to solve various mathematical problems and interpret the result and its consequences.	PO(a)	C3, C4	e.g., Lectures, Homework	e.g., Written exams; viva voce; presentation; assignment

### *POs

PO (a): Engineering knowledge; PO(b): Problem analysis; PO (c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): Engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**C-Cognitive** : C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

 A-Affective
 : A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

 P-Psychomotor:
 P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

#### 5. Lecture Plan

wk	Lecture Topics	Corresponding CO(s)
1	<ul> <li>Theories of light, Interference of light, Young's double slit experiment</li> <li>Introductory discussion of this course; Definition of wave motion and Simple harmonic motion (SHM), differential equation of SHM.</li> <li>Thermometry, different types of thermometers, platinum resistance thermometer, thermo-electric thermometer</li> </ul>	CO1, CO2, CO3
2	<ul> <li>Displacements of fringes and its uses, Fresnel bi-prism</li> <li>Solution of differential equation of SHM, velocity and acceleration of SHM, Significance of angular frequency, and solving mathematical problems.</li> <li>Kinetic theory of gases: Maxwell distribution of velocities, mean velocity</li> </ul>	CO1, CO2, CO3
3	<ul> <li>Interference at parallel and wedge-shaped films</li> <li>Total energy and average energy of SHM, and solving mathematical problems related to energy of SHM</li> <li>Most probable velocity, root mean square velocity, most probable energy, and average energy</li> </ul>	CO1, CO2, CO3
4	<ul> <li>Newton's rings, interferometers</li> <li>Examples of SHM: spring-mass system, effect of spring mass in the oscillation (effective mass), torsional pendulum, and solving mathematical problems</li> <li>Degrees of freedom, equipartition of energy, ratio of specific heats of monoatomic, diatomic, and triatomic molecules</li> </ul>	CO1, CO2, CO3
5	<ul> <li>Solving mathematical problems related to interference of light</li> <li>Combination of simple harmonic motions (in a same line and right angles), Lissajous figures</li> <li>Class Test (Heat &amp; Thermodynamics)</li> </ul>	CO1, CO2, CO3
6	<ul> <li>Class Test (Physical Optics)</li> <li>Damped harmonic oscillation (over-, under- and critical-damping conditions), quality factor, and logarithmic decrement</li> <li>Brownian motion, mean free path, solving mathematical problems of previous lectures</li> </ul>	CO1, CO2, CO3
7	<ul> <li>Diffraction of light, Fresnel and Fraunhofer diffraction, diffraction due to single slit</li> <li>Forced oscillation, resonance, two-body oscillations and reduced mass</li> <li>Van der Waals' equation of state, finding critical constants, and Van der Waals' constants</li> </ul>	CO1, CO2, CO3
8	<ul> <li>Diffraction from a circular aperture, diffraction at double slits</li> <li>Solving mathematical problems related to damped, forced and two-body oscillations</li> <li>First law of thermodynamics, applications of first law</li> </ul>	CO1, CO2, CO3
9	<ul> <li>N-slits-diffraction grating</li> <li>Class Test (Waves &amp; Oscillations)</li> <li>Reversible and irreversible processes, Carnot's cycle, second law of thermodynamics</li> </ul>	CO1, CO2, CO3
10	<ul> <li>Resolving power of optical instruments</li> <li>Various types of waves, progressive wave equation and differential equation of a progressive wave, and solving mathematical problems.</li> <li>Carnot's theorem, entropy, entropy in reversible and irreversible processes</li> </ul>	CO1, CO2, CO3
11	<ul> <li>Solving mathematical problems related to diffraction of light</li> <li>Energy, power and intensity of wave motion, stationary wave, analytical treatment of stationary wave, and solving mathematical problems.</li> </ul>	CO1, CO2, CO3

^{**}Domains

wk	Lecture Topics	Corresponding CO(s)
	Thermodynamic functions and potentials, mathematical problems	
	• Polarization of light, production and analysis of polarized light, Brewster's Law, Malus law	
12	• Energy of stationary wave, group velocity, phase velocity and relation between group velocity and phase velocity.	CO1, CO2, CO3
	Maxwell's thermodynamic relations	
13	<ul> <li>Polarization by double refraction, retardation plates, Nicol prism, optical activity</li> <li>Architectural acoustics, reverberation and Sabine's reverberation formula for growth of intensities</li> <li>Clausius-Clapeyron equation, specific heat for perfect gas and Van der Waals' gas</li> </ul>	CO1, CO2, CO3
14	<ul> <li>Polarimeters, polaroid, solving mathematical problems related to polarization of light</li> <li>Sabine's reverberation formula for decay of intensities, equation for reverberation time and solving mathematical problems related to reverberation.</li> <li>Gibbs phase rule, third law of thermodynamics, and its applications for perfect gas</li> </ul>	CO1, CO2, CO3

### 6. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment: Continuous assessment any of the activities such as quizzes, assignment, presentation, etc. The scheme of the continuous assessment for the course will be declared on the first day of classes.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

#### 7. Distribution of Marks

Class Participation	10%
Continuous Assessment	20%
Final Examination	70%
Total	100%

#### 8. Textbook/ Reference

- 3. Fundamentals of Physics; D. Halliday, R. Resnick, and J. Walker
- 4. Fundamentals of Optics; F. A. Jenkins, and H. E. White
- 5. Vibrations & Waves; A. P. French
- 6. Waves & Oscillations; N. Subrahmanyum and Brij Lal
- 7. Heat and Thermodynamics; N. Subrahmanyum and Brij Lal
- 8. Physics for Engineers Part-1; Giasuddin Ahmad

## 20.68 Description of Course PHY 102

## **SECTION A: General Information**

- 1 Course Title : Physics Sessional
- 2 Type of Course : Non-departmental course
- 3 Offered to : Department of Civil Engineering
- 4 Pre-requisite Course(s) : N/A

## **SECTION B: Course Details**

1. Course Content (As approved by the Academic Council)

Experiments based on waves & oscillations, heat & thermodynamics, electricity & magnetism, optics, and modern physics.

### 2. Course Objectives

Objective 1: To gain practical knowledge about theories of Physics by performing different experiments. Objective 2: To develop analytical and scientific report writing skills.

### 3. Knowledge required

Insert previous knowledge requirements: N/A

### 4. Course Outcomes

CO No.	CO Statement	Corresponding PO(s)*	Domains and	Delivery Method(s) and	Assessment Tool(s)
	At the end of the course, a student should be able to -		Taxonomy level(s)**	Activity(-ies)	
CO1	Describe various experimental techniques, and use different instruments to collect, tabulate the data.	PO(a)	C1, C3	Classwork, Q & A Forums	Classwork
CO2	Analyse data, plot graphs, and connect the results for qualitative understanding.	PO(a)	C3, C4	Classwork, Q & A Forums	Classwork
CO3	Interpret the result, draw conclusions and prepare laboratory report.	PO(a)	C3	Classwork, Q & A Forums	Classwork

#### *POs

PO (a): Engineering knowledge; PO(b): Problem analysis; PO (c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): Engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**Domains

**C-Cognitive** : C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective : A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

#### 5. Lecture Plan

wk	Lecture Topics	Corresponding CO(s)
1	Introductory class	
2	W2: Determination of the frequency of a tuning fork by Melde's apparatus	
2	W3: Determination of the spring constant and the effective mass of a loaded spring	
3	H2: Determination of the pressure-coefficient of air by a constant volume air thermometer	
4	H4: Determination of the thermal conductivity of a bad conductor by Lee's method	
5	O4: Determination of the radius of curvature of a Plano-convex lens by the Newton's ring method	CO1, CO2, CO3
6	O5: Determination of the specific rotation of sugar solution by a polarimeter	001, 002, 005
7	M1: Determination of the threshold frequency for the material of a photo-cathode and hence find the value of the Planck's constant	
8	M2: Determination of the linear absorption coefficient and mass absorption coefficient of Aluminum using a ¹³⁷ Cs radioactive source and verification of the inverse	
9	square law of gamma radiation E3: Verification of Biot-Savart law and Tangent law	

wk	Lecture Topics	Corresponding CO(s)
10	E5: Determination of the temperature coefficient of the resistance of the material of a wire	
11	H5: Calibration of a given thermocouple	
12	H6: Determination of the melting point of a solid using the calibration curve obtained in experiment H5	
	VL-M3: Determination of lattice constant of NaCl crystal using an X-ray diffraction simulator	
	E6: Determination of dielectric constant of materials using a parallel plate capacitor	
13	H7: Determination of the mechanical equivalent of heat by the electrical method	
	One experiment will be performed by each student per week.	
14	Sessional Quiz	

#### 6. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment: Continuous assessment will be evaluated based on viva and laboratory report, etc. The scheme of the continuous assessment for the course will be declared on the first day of classes.
- Quiz: A comprehensive quiz will be held at the end of the term following the guideline of the Department.

#### 7. Distribution of Marks

Class Participation	10%
Continuous Assessment	70%
Quiz	20%
Total	100%

#### 8. Textbook/ Reference

- 1. Practical Physics for Degree Students; Giasuddin Ahmad and Md. Sahabuddin.
- 2. Advanced Practical Physics for students; B. L. Worsnop and H. T. Flint

## 20.69 Description of Course PHY 151

## **SECTION A: General Information**

1	Course Title	: Structure of Matter, Electricity & Magnetism and Modern Physics
2	Type of Course	: Non-departmental course
3	Offered to	: Department of Civil Engineering
4	Pre-requisite Course(s)	: N/A

#### **SECTION B: Course Details**

1. Course Content (As approved by the Academic Council)

**Structure of Matter:** crystalline and non-crystalline solids, single crystal and polycrystal solids, unit cell, crystal systems, co-ordinations number, crystal planes and directions, NaCl and CsCl structure, packing factor, miller indices, relation between interplanar spacing and Miller indices, Bragg's law, methods of determination of interplanar spacing from diffraction patterns; defects in solids: point defects, line defects, bonds in solids, interatomic distances, calculation of cohesive and bonding energy; introduction to band theory: distinction between metal, semiconductor and insulator.

**Electricity and Magnetism:** crystalline and non-crystalline solids, single crystal and polycrystal solids, unit cell, crystal systems, co-ordinations number, crystal planes and directions, NaCl and CsCl structure, packing factor, miller indices, relation between interplanar spacing and Miller indices, Bragg's law, methods of determination of interplanar spacing from diffraction patterns; defects in solids: point defects, line defects, bonds

in solids, interatomic distances, calculation of cohesive and bonding energy; introduction to band theory: distinction between metal, semiconductor and insulator.

**Modern Physics:** Michelson-Morley's experiment, Galilean transformation, special theory of relativity and its consequences; quantum theory of radiation; photo-electric effect, Compton effect, wave particle duality, interpretation of Bohr's postulates, radioactive disintegration, properties of nucleus, nuclear reactions, fission, fusion, chain reaction, nuclear reactor.

#### 2. Course Objectives

Objective 1: To develop logical and critical thinking with scientific knowledge of structure of matter, electricity & magnetism, and modern physics required for the students of civil engineering.Objective 2: To understand the different laws of physics associated with structure of matter, electricity & magnetism and modern physics, and apply them to solve the real life problems.

## 3. Knowledge required

Insert previous knowledge requirements: N/A

#### 4. Course Outcomes

CO No.	CO Statement At the end of the course, a student should be able to	Corresponding PO(s)*	Domains and Taxonomy level(s)**	Delivery Method(s) and Activity(-ies)	Assessment Tool(s)
CO1	Describe the basic laws of physics related to structure of matter, electricity & magnetism, and modern physics to express different phenomena in the physical world.	PO(a)	C1	e.g., Lectures, Homework	e.g., Written exams; viva voce; presentation; assignment
CO2	Explain the fundamental concepts and theories of structure of matter, electricity & magnetism, and modern physics applicable for different physical conditions.	PO(a)	C2	e.g., Lectures, Homework	e.g., Written exams; viva voce; presentation; assignment
CO3	Apply the relevant laws of physics to solve various mathematical problems and interpret the result and its consequences.	PO(a)	C3, C4	e.g., Lectures, Homework	e.g., Written exams; viva voce; presentation; assignment

#### *POs

PO (a): Engineering knowledge; PO(b): Problem analysis; PO (c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): Engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

**Domains

C-Cognitive : C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective : A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

#### 5. Lecture Plan

wk	Lecture Topics	Corresponding CO(s)
1	<ul> <li>Crystalline and non-crystalline solids, single crystal and polycrystalline solids, unit cell, crystal systems</li> <li>Electric charge, Coulomb's Law, electric field, electric field lines, electric field due to a point charge, electric dipole, line of charge and charged disk, movement of charge in an electric field</li> <li>Frame of reference, Failure of Newtonian mechanics, Galilean transformation, Concept of Ether</li> </ul>	CO1, CO2
2	<ul> <li>Co-ordinations number, density and packing factor</li> <li>Flux - Gauss' law - application of Gauss' law: cylindrical, spherical and planar symmetry</li> <li>Michelson-Morley experiment, Consequence of Michelson-Morley experiment</li> </ul>	CO1, CO2, CO3
3	Crystal planes and directions, Miller indices.	CO1, CO2, CO3

wk	Lecture Topics	Corresponding CO(s)	
	<ul> <li>Electric potential energy and electric potential, equipotential surface, calculating potential from the field</li> <li>Derivation of Lorentz transformation equations, Relativity of length, time and mass</li> </ul>		
4	<ul> <li>Relation between interplanar spacing and Miller indices, mathematical problems related to crystal directions</li> <li>Potential due to a point charge and a group of point charges, potential due to continuous charge distribution, conductors in electrostatic equilibrium</li> <li>Mass-Energy relation, Relativistic addition of velocities, Relativity of simultaneity</li> </ul>	CO1, CO2, CO3	
5	<ul> <li>Class test (Structure of matter)</li> <li>Capacitance - capacitors in series and in parallel - energy stored in an electric field - capacitors with dielectric</li> <li>Theory of light, Planck's quantum theory, Photo-electric effect, Characteristics (laws) of photoelectric emission</li> </ul>	CO1, CO2, CO3	
6	<ul> <li>Crystal structures: NaCl, CsCl, etc</li> <li>Class Test (Electricity and Magnetism)</li> <li>Failure of wave theory of light to explain Photoelectric effect, Einstein photoelectric equation, Determination of Planck's constant, Light-matter interaction, Applications of photo-electric effect</li> </ul>	CO1, CO2, CO3	
7	<ul> <li>Electric current, resistance and Ohm's law - resistors in series and parallel - power in electric circuits - Kirchhoff's laws and solving circuits - RC circuits</li> <li>Bragg's Law, Methods of determination of interplanar spacing from diffraction patterns, mathematical problems related to crystal structure analysis</li> <li>Compton effect, Compton theory, Wave particle duality/de-Broglie hypothesis, Determination of de-Broglie wavelength</li> </ul>	CO1, CO2, CO3	
8	<ul> <li>Bonds in solids, interatomic distances</li> <li>Magnetic fields, Hall effect, Biot-savart law, torque on a current loop, magnetic dipole moment</li> <li>Limitation of Rutherford's atom model, Postulates of the Bohr atomic model, Limitation of Bohr's atom model, de-Broglie atom model</li> </ul>	CO1, CO2, CO3	
9	<ul> <li>Calculation of cohesive and bonding energy; mathematical problems related to bonds in solids.</li> <li>Magnetic field due to a current, force between two parallel currents, Ampere's law, solenoid</li> <li>Class Test (Modern physics)</li> </ul>	CO1, CO2, CO3	
10	<ul> <li>Introduction to band theory</li> <li>Faraday's law of induction, Lenz's law, induction and energy transfer, induced electric field</li> <li>Properties of nucleus: Static nuclear properties and Dynamic properties, Mass defect, Binding energy, Binding energy per nucleon, Nuclear force</li> </ul>	CO1, CO2, CO3	
11	<ul> <li>Distinction between metal, semiconductor, and insulator</li> <li>Inductors and inductance, self-induction, energy stored in a magnetic field, mutual induction, LR circuit</li> <li>Nuclear chain reactions, Different condition for nuclear chain reactions, Nuclear fission, Nuclear fusion, Little Boy: A gun-type bomb, Fat Man: Implosion-type bomb</li> </ul>	CO1, CO2, CO3	
12	<ul> <li>Defects in solids, point defects</li> <li>Magnetic properties of matter, types of magnetic materials, application of magnetic materials</li> <li>Nuclear power reactor, Different parts of nuclear fission reactor, Types of fission reactor, Nuclear fusion reactor, Types of fusion reactor</li> </ul>	CO1, CO2, CO3	
13	<ul> <li>Line defects, plane defects</li> <li>Hysteresis curve; Electromagnetic oscillation: L-C oscillations and its analogy to simple harmonic motion.</li> <li>Difficulties against using nuclear fusion, Nuclear models, The liquid drop model, Semi-empirical mass formula</li> </ul>	CO1, CO2, CO3	

wk	Lecture Topics	Corresponding CO(s)
14	<ul> <li>Volume defects, consequences of defects and discussion based on application point of view.</li> <li>Mathematical problems related to magnetic field and magnetism</li> <li>The shell model, Radioactivity, Radioactive transformation, Decay law, Average life period of a radioelement</li> </ul>	CO1, CO2, CO3

### 6. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment: Continuous assessment any of the activities such as quizzes, assignment, • presentation, etc. The scheme of the continuous assessment for the course will be declared on the first day of classes.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following ٠ the guideline of academic Council.

#### 7. Distribution of Marks

Class Participation	10%
Continuous Assessment	20%
Final Examination	70%
Total	100%

### 8. Textbook/ Reference

- 3. Fundamentals of Physics; D. Halliday, R. Resnick, and J. Walker
- Concepts of Modern Physics; Arthur Beiser
   Modern Physics; Kenneth S. Krane
- 6. Introduction to Solid State Physics; C. Kittel
- 7. Solid State Physics; M. A. Wahab

Physics for Engineers - Part-2; Giasuddin Ahmad

## 20.70 Description of Course WRE 211

## Part-1: General Information

1.	Course Number Course Title Credit/Contact Hours	: WRE 211 : Fluid Mechanics : 3.0 (3 Hours/ Week)
2.	Level and Term Academic Term	: Level-2, Term-2 :
3.	Type of Course	: Departmental Core Course (Theory)
4.	Pre-requisite Course(s)	: None
5.	Course Website	:
6.	Class Schedule	:
7.	Important Dates	: For important dates and examination schedules and latest updates, please follow the course website.
8.	<b>Course Teachers</b>	

256

## 9. Consultation Time :

## Part-2: Course Details

10.	Course Content (As approved by the Academic Council)	Fluid properties; fluid statics; kinematics of fluid flows; fluid flow concepts and basic equations- continuity equation, Bernoulli's equation, energy equation, momentum equation and forces in fluid flow; steady incompressible flow in pressure conduits, laminar and turbulent flow, general equation for fluid friction; empirical equations for pipe flow; minor losses in pipe flow; pipe flow problems-pipes in series and parallel, branching pipes, pipe networks.
11.	Course Objectives	To teach the students the different properties and governing laws of fluid flow and their applications in civil and water resources engineering.
12.	Student Learning Time	126 hours (Face-to-face – 42 hours, Independent/group learning – 84 hours) in 14 weeks
13.	Transferable Skills	1. Creative and critical thinking
		2. Problem solving skill
14.	Knowledge Required	Fundamental understanding of Physics, integral and differential calculus.

## 15. Course Outcomes

Course Learning Outcome (CO)		Correspondi ng Program Outcomes, PO(s) *	Domains and Taxonom y level(s)**	Knowled ge Profile (K)	Comple x problem solving (P)	Complex Engineerin g activities (A)	Deliver y Method s and Activity (ies)	Assessmen t Tool(s)
CO -1	Ability to identify and explain the fundament al concepts and basic principle for fluid statics and dynamics	PO-1, PO-2	C1, C2	K1, K2			Lecture s, Tutorial s	Assignmen t, Quiz, Final exam
CO -2	Ability to estimate forces on different structures and to apply basic equations on a fluid system to solve real life problems	PO-1, PO-2,	C2, C3	K2, K3			Lecture s, Tutorial s	Assignmen t, Quiz, Final exam
CO -3	Ability to apply physics of fluid flow to estimate the pipe losses and to design pipe network	PO-1, PO-2, PO-4	C2, C3, C5	K3, K5			Lecture s, Tutorial s	Assignmen t, Quiz, Final exam

## *Programme Outcomes -PO (Outcomes of B.Sc. in WRE degree)

PO-1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems in the field of water resources engineering and civil engineering.

PO-2: Problem analysis: Identify, formulate, research and analyze complex engineering problems and reach substantiated conclusions using the principles of mathematics, the natural sciences and the engineering sciences.

PO-3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety and of cultural, societal and environmental concerns.

PO-4: Investigation: Conduct investigations of complex problems, considering experimental design, data analysis and interpretation and information synthesis to provide valid conclusions.

PO-5: Modern tool usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools, including prediction and modeling, to complex engineering activities with an understanding of their limitations.

PO-6: The engineer and society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.

PO-7: Environment and sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.

PO-8: Ethics: Apply ethical principles and commit to the professional ethics, responsibilities and the norms of the engineering practice.

PO-9: Individual work and teamwork: Function effectively as an individual and as a member or leader of diverse teams and in multidisciplinary settings.

PO-10: Communication: Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.

PO-11: Project management and finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to one's work as a team member or a leader to manage projects in multidisciplinary environments.

PO-12: Life-long learning: Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the broadest context of technological change.

****The cognitive domain (C) and its Taxonomy Levels (1 to 6)** aim to develop the mental skills and the acquisition of knowledge of the individual. The cognitive domain encompasses of six categories which include:

C1- knowledge/remember;	C2-understand/explain/estimate;	C3-apply;
C4-analysis;	C5-synthesis/design/create/construct;	C6-evaluate/judge/verify

## **Knowledge Profile (K)**

K1	A systematic, theory-based understanding of the natural sciences applicable to the discipline
K2	Conceptually based mathematics, numerical analysis, statistics and formal aspects of computer and information science to support analysis and modelling applicable to the discipline
<i>K</i> 3	A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline
K4	Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline
K5	Knowledge that supports engineering design in a practice area
K6	Knowledge of engineering practice (technology) in the practice areas in the engineering discipline
K7	Comprehension of the role of engineering in society and of the identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity in economic, social, cultural, environmental and sustainability terms
K8	Engagement with selected knowledge in the research literature of the discipline

## **Complex Problem Solving (P)**

	Attribute	Complex Problems	
P1	Range of conflicting requirements	Involve wide-ranging or conflicting technical, engineering and other issues	
P2	Depth of analysis required	Have no obvious solution and require abstract thinking and originality in analysis to formulate suitable models.	
<i>P3</i>	Depth of knowledge required	<b>Require research-based knowledge</b> , much of which is at or informed by the forefront of the professional discipline, that allows a fundamental-based, first-principles analytical approach	
<i>P4</i>	Familiarity of issues	Involve infrequently encountered issues	
P5	Extent of applicable codes	Are outside the problems encompassed by standards and codes of practice professional engineering	
P6	Extent of stakeholder involvement and level of conflicting requirements		
<b>P</b> 7	Interdependence	Are high-level problems that include many component parts or sub-problems	

## **Complex Engineering Activities (A)**

	Attribute	Complex Problems
A1	Range of resources	Involve the use of diverse resources (for this purpose, resources include people, money, equipment, materials, information and technologies)
A2	Level of interaction	Require the resolution of significant problems arising from interactions between wide- ranging or conflicting technical, engineering or other issues
A3	Innovation	Involve the creative use of engineering principles and research-based knowledge in novel ways
A4	Consequences for society and the environment	<i>Have significant consequences in a range of contexts, characterized by their difficulty of prediction and mitigation</i>
A5	Familiarity	Are outside the problems encompassed by standards and codes of practice for professional engineering

## 16. Text Book:

- Fluid Mechanics with Engineering Applications (SI Metric Edition)
  - ----- Robert L. Dauherty ----- Joseph B. Franzini ----- E. John Finnmore
- Fluid Mechanics
  - ----- Victor L. Streeter
    - ----- E. Benjamin Wylie

## 17. Lecture Schedule:

Lecture No	Topics	Suggested Reading	Corresponding CO(s)
01	Introduction to Fluid Mechanics	Handout	CO-1
02	Fluid Properties: Density, Specific gravity, surface tension, adhesion-cohesion, capillarity	Handout; Daugherty and Franzini Ch-1; Streeter Ch-1	CO-1
03	Fluid Properties: Viscosity and Rheological behaviour	Handout; Daugherty and Franzini Ch-1; Streeter Ch-1	CO-1
04	Problem Solving – Fluid Properties	Handout; Daugherty and Franzini Ch-3; Streeter Ch-3	CO-1
05	Fluid Statics: Pressure variation in static fluid	Handout; Daugherty and Franzini Ch-2; Streeter Ch-2	CO-1 CO-2
06	Measurement of pressure	Handout, Daugherty and Franzini Ch-2; Streeter Ch-2	CO-1 CO-2
07	Problem Solving – Pressure in static fluid	Handout, Daugherty and Franzini Ch-2; Streeter Ch-2	CO-1 CO-2
08	CT 1		
09	Forces on inclined plane surface	Handout, Daugherty and Franzini Ch-2; Streeter Ch-2	CO-1 CO-2
10	Forces on curved surface	Handout, Daugherty and Franzini Ch-2; Streeter Ch-2	CO-1 CO-2
11	Buoyancy and stability of submerged and floating bodies	Handout, Daugherty and Franzini Ch-2; Streeter Ch-2	CO-1 CO-2
12	Fluid masses subjected to acceleration	Handout, Daugherty and Franzini Ch-2; Streeter Ch-2	CO-1 CO-2
13	Laminar and turbulent flow	Handout; Daugherty and Franzini Ch-8; Streeter Ch-10	CO-3
14	General equation for fluid friction, Empirical equations for pipe flow	Handout; Daugherty and Franzini Ch-8; Streeter Ch-10	CO-3
15	Problem Solving – Frictional losses in pipe flow	Handout; Daugherty and Franzini Ch-8; Streeter Ch-10	CO-3
16	Minor losses in pipe flow	Handout; Daugherty and Franzini Ch-8; Streeter Ch-10	CO-3
17	CT 2		
18	Pipes in series and parallel, branching pipes	Handout; Daugherty and Franzini Ch-8; Streeter Ch-10	CO-3
19	Pipe networks	Handout; Daugherty and Franzini Ch-8; Streeter Ch-10	CO-3

Lecture No	Topics	Suggested Reading	Corresponding CO(s)
01	Fluid Mechanics: Concepts and Approaches Handout		CO-1
02	Kinematics of Fluid Flow	Handout; Daugherty and Franzini Ch-3; Streeter Ch-3	CO-1
03	Kinematics of Fluid Flow	Handout; Daugherty and Franzini Ch-3; Streeter Ch-3	CO-1
04	Flow Type and Continuity Equation	Handout; Daugherty and Franzini Ch-3; Streeter Ch-3	CO-1 CO-2
05	Bernoulli's Theorem	Handout; Daugherty and Franzini Ch-3; Streeter Ch-4	CO-1 CO-2
06	CT-1		
07	Navier-Stokes Equation	Handout,	CO-1 CO-2
08	Circular Flow and Energy Balance	Streeter Ch-3,4; Daugherty and Franzini Ch-3,4	CO-1 CO-2
09	Problem Solving - Energy Equation	Handout	CO-1 CO-2
10	Pressure Difference in Curved Flow Path	Daugherty and Franzini Ch-3; Handout	CO-1 CO-2
11	Momentum and Forces in Fluid Flow	Handout; Daugherty and Franzini Ch-6; Streeter Ch-5,6	CO-1 CO-2
12	CT-2		
13	Momentum and Forces in Fluid Flow	Handout; Daugherty and Franzini Ch-6; Streeter Ch-5,6	CO-1 CO-2
14	Momentum and Forces in Fluid Flow	Handout; Daugherty and Franzini Ch-6; Streeter Ch-5,6	CO-1 CO-2
15	Momentum and Forces in Fluid Flow	Handout; Daugherty and Franzini Ch-6; Streeter Ch-5,6	CO-1 CO-2
16	Problem Solving - Momentum and Forces in Fluid Flow	Handout; Daugherty and Franzini Ch-6; Streeter Ch-5,6	CO-1 CO-2
17	Problem Solving - Momentum and Forces in Fluid Flow	Handout; Daugherty and Franzini Ch-6; Streeter Ch-5,6	CO-1 CO-2
18	Momentum and Forces in Fluid Flow- Propeller and Wind Turbine	Handout; Streeter Ch-6	CO-1 CO-2
19	Problem Solving - Momentum and Forces in Fluid Flow-Propeller and Wind Turbine	Handout; Streeter Ch-6	CO-1 CO-2
20	Turbomachines – Pumps, Turbines	Handout	CO-1 CO-2
21	Overall discussions and review		

### Lecture Schedule (Section-B, 1.5 Cr. Hrs)

**18.** Assessment • Class Participation: Class participation and attendance will be recorded in every class. Strategy

• Continuous Assessment: Continuous assessment any of the activities such as quizzes, assignment, presentation, etc. The scheme of the continuous assessment for the course will be declared on the first day of classes.

• Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

19. Distribution<br/>of MarksClass Participation<br/>Continuous Assessment<br/>Final Examination10%<br/>20%<br/>70%<br/>100%

## 20.71 Description of Course WRE 212

## Part-1: General Information

1. Course Number Course Title Credit/Contact Hours	: WRE 212 : Fluid Mechanics Sessional : 1.50 (3 Hours/ Week)
2. Level and Term Academic Term	: Level-2, Term-2 :
3. Type of Course	: Departmental Core Course (Sessional)
4. Pre-requisite Course(s)	: None
5. Course Website	:
6. Class Schedule	:
7. Important Dates	: For important dates and examination schedules and latest updates, please follow the course website.
8. Course Teachers	
9. Consultation Time	:
Part-2: Course Details	
<b>10.</b> Course Content (As approved by the Academic Council)	Center of pressure; proof of Bernoulli's theorem; flow through venturimeter; flow through orifice; coefficient of velocity by co-ordinate method; flow through mouthpiece; flow over V- notch; flow over sharp crested weir; fluid friction in pipe.
11. Course Objectives	To teach the students the application of different fluid properties and governing laws and the application of different flow measuring devices.
12. Student Learning Time	126 hours (Face-to-face – 42 hours, Independent/group learning – 84 hours) in 14 weeks
13. Transferable Skills	1. Creative and critical thinking
	2. Problem solving skill
14. Knowledge Required	Fundamental understanding of Physics, Integral and Differential Calculus.

#### 15. Course Outcomes

	rse Learning Dutcome (CO)	Correspondi ng Program Outcomes, PO(s) *	Domains and Taxonomy Level** Cognitive Domain (C)	Knowledg e Profile (K)***	Complex problem solving (P)****	Complex Engineeri ng activities (A)*****	Delivery Method(s)	Assessment Tool(s)
CO-1	Apply continuity, momentum, and energy equation on a fluid system.	PO-1, PO-2, PO-4	C3	К3			Lectures, Hand-outs and Video Demonstrat ion	Report writing, Quiz, Presentation, Viva
CO-2	Apply basic principles of a fluid system to determine the performance of flow- measuring devices.	PO-1, PO-2, PO-4	C3	К3			Lectures, Hand-outs and Video Demonstrat ion	Report writing, Quiz, Presentation, Viva
CO-3	Apply the laws of fluid flow for a pipe system and calculation of head loss for different conditions.	PO-1, PO-2, PO-4	C3	К3			Lectures, Hand-outs and Video Demonstrat ion	Report writing, Quiz, Presentation, Viva

## *Programme Outcomes -PO (Outcomes of B.Sc. in Water Resources Engineering degree)

PO-1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems in the field of water resources engineering and civil engineering.

PO-2: Problem analysis: Identify, formulate, research and analyze complex engineering problems and reach substantiated conclusions using the principles of mathematics, the natural sciences and the engineering sciences.

PO-3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety and of cultural, societal and environmental concerns.

PO-4: Investigation: Conduct investigations of complex problems, considering experimental design, data analysis and interpretation and information synthesis to provide valid conclusions.

PO-5: Modern tool usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools, including prediction and modeling, to complex engineering activities with an understanding of their limitations.

PO-6: The engineer and society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.

PO-7: Environment and sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.

PO-8: Ethics: Apply ethical principles and commit to the professional ethics, responsibilities and the norms of the engineering practice.

PO-9: Individual work and teamwork: Function effectively as an individual and as a member or leader of diverse teams and in multidisciplinary settings.

PO-10: Communication: Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.

PO-11: Project management and finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to one's work as a team member or a leader to manage projects in multidisciplinary environments.

PO-12: Life-long learning: Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the broadest context of technological change.

## Cognitive domain (C)

****The cognitive domain (C) and its Taxonomy Levels (1 to 6)** aim to develop the mental skills and the acquisition of knowledge of the individual. The cognitive domain encompasses of six categories which include:

C1- knowledge/remember;	C2-understand/explain/estimate;	C3-apply;
C4-analysis;	C5-synthesis/design/create/construct;	C6-evaluate/judge/verify

## ***Knowledge Profile (K)

K1	A systematic, theory-based understanding of the natural sciences applicable to the discipline
K2	Conceptually based mathematics, numerical analysis, statistics and formal aspects of computer and information science to support analysis and modelling applicable to the discipline
K3	A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline
K4	<i>Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline</i>
K5	Knowledge that supports engineering design in a practice area
K6	Knowledge of engineering practice (technology) in the practice areas in the engineering discipline
K7	Comprehension of the role of engineering in society and of the identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity in economic, social, cultural, environmental and sustainability terms
K8	Engagement with selected knowledge in the research literature of the discipline

#### ****Complex Problem Solving (P)

	Attribute	Complex Problems
P1	Range of conflicting requirements	Involve wide-ranging or conflicting technical, engineering and other issues
P2	Depth of analysis required	Have no obvious solution and require abstract thinking and originality in analysis to formulate suitable models.
<i>P3</i>	Depth of knowledge required	<i>Require research-based knowledge, much of which is at or informed by the forefront of the professional discipline, that allows a fundamental-based, first-principles analytical approach</i>
<i>P4</i>	Familiarity of issues	Involve infrequently encountered issues
P5	Extent of applicable codes	Are outside the problems encompassed by standards and codes of practice for professional engineering
P6	Extent of stakeholder involvement and level	Involve diverse groups of stakeholders with widely varying needs

	of conflicting requirements	
<b>P</b> 7	Interdependence	Are high-level problems that include many component parts or sub-problems

## *****Complex Engineering Activities (A)

	Attribute	Complex Problems
A1	Range of resources	Involve the use of diverse resources (for this purpose, resources include people, money, equipment, materials, information and technologies)
A2	Level of interaction	Require the resolution of significant problems arising from interactions between wide- ranging or conflicting technical, engineering or other issues
A3	Innovation	Involve the creative use of engineering principles and research-based knowledge in novel ways
A4	Consequences for society and the environment	<i>Have significant consequences in a range of contexts, characterized by their difficulty of prediction and mitigation</i>
A5	Familiarity	Are outside the problems encompassed by standards and codes of practice for professional engineering

#### 16. Text Book: WRE 212 Lab Manual

#### **17. Lecture Schedule:**

Strategy

Lecture No	Topics	Suggested Reading	Corresponding CO(s)
01	Center of Pressure	Lab Manual, Hand-outs	CO1
02	Bernoulli's Theorem	Lab Manual, Hand-outs	CO1
03	Flow Through Venturimeter	Lab Manual, Hand-outs	CO2
04	Flow Through Orifice	Lab Manual, Hand-outs	CO2
05	Flow Through an External Cylindrical Mouthpiece	Lab Manual, Hand-outs	CO2
06	Mid-Quiz	-	-
07	Mid-Viva	_	-
08	Flow over a Sharp Crested Weir	Lab Manual, Hand-outs	CO2
09	Flow over a V-notch	Lab Manual, Hand-outs	CO2
10	Fluid Friction in Pipe	Lab Manual, Hand-outs	CO3
11	Head Loss due to Sudden Contraction and Sudden Expansion in a Pipe	Lab Manual, Hand-outs	CO3
12	Final-Quiz		-
13	Final-Viva	_	-

18. Assessment 1. Class Attendance - Class participation and attendance will be recorded in every class

> 2. Daily Assessment- Daily Assessment may be in the form of laboratory performance, report writing and submission, short class test, VIVA etc.

- 3. Mid Quiz and Final Quiz Two comprehensive written examinations which will be declared at least one week before occurrence
- 1. Class Participation-10%, 19. Distribution of Marks
  - 2. Quiz/Assignments-30%,
  - 3. Presentation and Viva-30%,
  - 4. Report writing- 30%.

## 20.72 Description of Course WRE 311

#### Part-1: General Information

1 •	Course Number Course Title Credit/Contact Hours	WRE 311 Open Channel Hydraulics 4.00
	Level and Term Academic Term	Level-3, Term-1 July 2021
3.	Type of Course	Required Course
4 •	Pre-requisite Course(s)	WRE211
	Course Website	https://teams.microsoft.com/1/team/19%3aq4XtxBg2e_8ly1vVOYZnE5fYJBUHFNG_GAZp8b ykIk41%40thread.tacv2/conversations?groupId=3aaf1dc3-c56d-4e44-b2d4-
•	(Part-A)	d8ffa31eac17&tenantId=79a50cb4-fa04-495b-9bd1-7860bc00fe6a
6	Lecture Schedule	Part-A: Sun (08:00 am -08:50 am), Mon (09:00 am -9:50 am)
7 •	Important Dates	For important dates and examination schedules and latest updates, please follow the course website.
8	<b>Course Teachers</b>	(Part-A, 2 Cr. Hrs) (Part-B, 2 Cr. Hrs)
•		Mrs Sara FerdousiDr. K. M.Ahtesham HossainAsst. Professor, Department of WRE, BUETAsst. Professor, Department of WRE, BUET email: ahtesham@wre.buet.ac.bdemail: sara@wre.buet.ac.bdemail: ahtesham@wre.buet.ac.bd
9	Consultation Time	Tuesday (11:00 am –1:00 pm)

#### Part-2: Course Details

#### 10. Course Content (As approved by the Academic Council) Open channel flow and its classification; velocity and pressure distributions; energy equation, specific energy and transition problems; critical flow and control; principles of flow measurement devices; concept of uniform flow, Chezy and Manning equations, estimation of resistance coefficients and computation of uniform flow; momentum equation and specific momentum; hydraulic jump theory and analysis of gradually varied flow; computation of flow profiles; design of channels. Hydraulics of bridge and culvert

- 11. Course Objectives 1. Enable students to understand and apply the fundamental principles governing open channel hydraulics to the design of engineering systems.
  - 2. To teach students how open channel flow varies with space and time (uniform, non-uniform, steady, gradually varied, rapidly varied flow,)
  - 3. To teach the students the fundamental laws of mechanics (conservation of mass, momentum and energy) to a wide variety of flows

- 4. To teach the students the concept of uniform flow, specific energy and critical flow, gradually varied flow and their computation
- 5. To teach the students the different methods for computation of flow profiles
- 6. To teach students the hydraulics around bridge and culverts
- 7. To teach the students the different methods to design lined and unlined channels
- 12. Student Learning
   164 hours (Face-to-face 84 hours, Independent/group learning 80 hours)

   Time
- 13. Transferable Skills
- 1. Creative and critical thinking
- 2. Problem solving skill, planning and design skill
- 14. Knowledge Familiarity with the basic principles of mathematics, science and engineering Required

#### **15. Course Outcomes**

Course Learning Outcome (CO)		Correspo nding Program Outcome s, PO(s) *	Domains and Taxonomy Level** Congnitive Domain (C)	Knowl edge Profile (K)***	Comple x problem solving (P)****	Complex Engineeri ng activities (A)*****	Delivery Method(s)	Assessment Tool(s)
CO-1	Ability to <i>explain</i> and <i>apply</i> fundamental concepts, techniques, and engineering knowledge used in open channel Hydraulics	РО-1 РО-2	C1, C4	K1, K3	P2, P3, P6		Lectures, Tutorials, Home works	Assignment, Quiz, Final exam
CO-2	<i>Apply</i> continuity, momentum and energy equation on open channel flow system and <i>solve</i> real life problems	PO-1, PO-2, PO-3	C3	К2			Lectures, Tutorials, Home works	Assignment, Quiz, Final exam
CO-3	Ability to <i>explain</i> the theories of uniform flow, gradually varied flow, critical flow and <i>identify</i> different flow profiles in channels	PO-1 PO-2	C2 C5	K1, K3	P2, P3	A2, A3	Lectures, Tutorials, Home works	Assignment, Quiz, Final exam
CO-4	<b>Perform</b> hydraulic analysis and <b>design</b> of lined and unlined channels	РО-2,	C2 C6	K4, K5, K6		A4	Lectures, Tutorials, Home works	Assignment, Quiz, Final exam

#### *Programme Outcomes -PO (Outcomes of B.Sc. in Civil Engineering degree)

- PO-1: **Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- PO-2: **Problem analysis:** Identify, formulate, research and analyse complex engineering problems and reach substantiated conclusions using the principles of mathematics, the natural sciences and the engineering sciences.
- PO-3: **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety and of cultural, societal and environmental concerns.
- PO-4: **Investigation:** Conduct investigations of complex problems, considering experimental design, data analysis and interpretation and information synthesis to provide valid conclusions.
- PO-5: **Modern tool usage:** Create, select and apply appropriate techniques, resources and modern engineering and IT tools, including prediction and modeling, to complex engineering activities with an understanding of their limitations.
- PO-6: **The engineer and society:** Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
- PO-7: **Environment and sustainability:** Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.
- PO-8: Ethics: Apply ethical principles and commit to the professional ethics, responsibilities and the norms of the engineering practice.
- PO-9: **Individual work and teamwork:** Function effectively as an individual and as a member or leader of diverse teams and in multidisciplinary settings.
- PO-10: **Communication:** Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.
- PO- 11: **Project management and finance:** Demonstrate knowledge and understanding of engineering and management principles and apply these to one's work as a team member or a leader to manage projects in multidisciplinary environments.
- PO- 12: Life-long learning: Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the broadest context of technological change.

### **Cognitive Domain (C)**

****The cognitive domain (C) and its Taxonomy Levels (1 to 6)** aim to develop the mental skills and the acquisition of knowledge of the individual. The cognitive domain encompasses of six categories which include:

C1- knowledge/remember;	C2-understand/explain/estimate;	C3-apply;
C4-analysis;	C5-synthesis/design/create/construct;	C6-evaluate/judge/verify

## ***Knowledge Profile (K)

K1	A systematic, theory-based understanding of the natural sciences applicable to the discipline
K2	Conceptually based mathematics, numerical analysis, statistics and formal aspects of computer and information science to support analysis and modelling applicable to the discipline
K3	A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline
K4	<i>Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline</i>
K5	Knowledge that supports engineering design in a practice area
K6	Knowledge of engineering practice (technology) in the practice areas in the engineering discipline
K7	Comprehension of the role of engineering in society and of the identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity in economic, social, cultural, environmental and sustainability terms
K8	Engagement with selected knowledge in the research literature of the discipline

## ****Complex Problem Solving (P)

	Attribute	Complex Problems	
P1	Range of conflicting requirements	Involve wide-ranging or conflicting technical, engineering and other issues	
P2	Depth of analysis required	<i>Lave no obvious solution and require abstract thinking and originality in analysis to ormulate suitable models.</i>	
<i>P3</i>	Depth of knowledge required	<i>Require research-based knowledge, much of which is at or informed by the forefront of the professional discipline, that allows a fundamental-based, first-principles analytical approach</i>	
<i>P4</i>	Familiarity of issues	Involve infrequently encountered issues	
P5	Extent of applicable codes	Are outside the problems encompassed by standards and codes of practice for professional engineering	
P6	Extent of stakeholder involvement and level of conflicting requirements	Involve diverse groups of stakeholders with widely varying needs	
<b>P</b> 7	Interdependence	Are high-level problems that include many component parts or sub-problems	

# *****Complex Engineering Activities (A)

	Attribute	Complex Problems
A1	Range of resources	Involve the use of diverse resources (for this purpose, resources include people, money, equipment, materials, information and technologies)
A2	Level of interaction	Require the resolution of significant problems arising from interactions between wide- ranging or conflicting technical, engineering or other issues
A3	Innovation	Involve the creative use of engineering principles and research-based knowledge in novel ways
A4	Consequences for society and the environment	<i>Have significant consequences in a range of contexts, characterized by their difficulty of prediction and mitigation</i>
A5	Familiarity	Are outside the problems encompassed by standards and codes of practice for professional engineering

## 16. Text Book/Reference Reading Materials:

- Ven Te Chow, 1959. Open channel Hydraulics
   Chaundhury, M.H. 2008, Open Channel Flow, 2nd Edition
   Yunus Cengel and John Cimbala, Fluid Mechanics Fundamentals and Applications , 3rd Edition

## 17. Lecture Schedule (Part-A, 2 Cr. Hrs)

Lecture No	Topics	Suggested Reading	Corresponding CO(s)
01	Introduction to Open Channel Flow	Handout; Ven Te Chow Ch-1; Yunus et al Ch-13	CO-1
02	Geometric elements of different channel sections	Handout; Ven Te Chow Ch-1; Yunus et al Ch-13	CO-1
03	Effect of viscosity and gravity on Open Channel Flow and determining the state of floe	Handout; Ven Te Chow Ch-1; Yunus et al Ch-13	CO-1
04	Problem Solving – state of flow	Handout; Ven Te Chow Ch-1; Yunus et al Ch-13	CO-1
05	Velocity distribution in an open channel flow	Handout; Ven Te Chow Ch-2; Yunus et al Ch-13	CO-1
06	Problem Solving – calculating mean velocity using area velocity method	Handout; Ven Te Chow Ch-2; Yunus et al Ch-13	CO-1
07	Velocity distribution coefficients	Handout; Ven Te Chow Ch-2; Yunus et al Ch-13	CO-1
08	Pressure distribution in Open channel flow	Handout; Ven Te Chow Ch-2; Yunus et al Ch-13	CO-1
09	CT 1: velocity and pressure distribution in open channel flows		
10	Specific Energy and critical flow	Handout; Ven Te Chow Ch-3: Yunus et al Ch-13	CO-2 CO-3 CO-4
11	Characteristics of Specific Energy curve	Handout; Ven Te Chow Ch-3: Yunus et al Ch-13	CO-2 CO-3
12	Critical depth for different channel cross section	Handout; Ven Te Chow Ch-4: Yunus et al Ch-13	CO-2 CO-3
13	Numerical methods for calculating critical depth	Handout; Ven Te Chow Ch-4: Yunus et al Ch-13	CO-2 CO-3
14	Section factor and hydraulic exponent for critical flow	Handout; Ven Te Chow Ch-4: Yunus et al Ch-13	CO-2 CO-3
15	Transitions by change in channel bed	Handout; Ven Te Chow Ch-4: Yunus et al Ch-13	CO-1 CO-2 CO-3
16	Transitions by change in channel width	Handout; Ven Te Chow Ch-4: Yunus et al Ch-13	CO-1 CO-2 CO-3
17	Flow measuring devices	Handout; Ven Te Chow Ch-4: Yunus et al Ch-13	CO-1 CO-2 CO-3
18	CT 2: critical flow and transitions		CO-1 CO-3
19	Hydraulic jump and its classification	Handout; Ven Te Chow Ch-15: Yunus et al Ch-13	CO-1 CO-2
20	Principle of momentum and specific force	Handout; Ven Te Chow Ch-15: Yunus et al Ch-13	CO-1 CO-2
21	Sequent depths of hydraulic jump	Handout; Ven Te Chow Ch-15: Yunus et al Ch-13	CO-1 CO-2

22	Characteristics of hydroulis ison	Handout; Ven Te Chow Ch-15:	CO-1
22	Characteristics of hydraulic jump	Yunus et al Ch-13	CO-2
23	Submargad jump and stilling basin	Handout; Ven Te Chow Ch-15:	CO-1
25	Submerged jump and stilling basin	Yunus et al Ch-13	CO-2
24	Design of a stilling basin	Handout; Ven Te Chow Ch-15:	CO-1
24	Design of a stilling basin	Yunus et al Ch-13	CO-4
			CO-1
25	CT 3: Hydraulic Jump		CO-2
			CO-4
26	Design of rigid boundary channel using the	Handout; Ven Te Chow Ch-7:	CO-1
20	best hydraulic section	Yunus et al Ch-13	CO-4
27	Design of mobile boundary channel by	Handout; Ven Te Chow Ch-7:	CO-1
27	tractive force method	Yunus et al Ch-13	CO-4
28	Design of alluvium channel by Lacey's	Handout; Ven Te Chow Ch-7:	CO-1
28	approach	Yunus et al Ch-13	CO-4

## Lecture Schedule (Part-B, 2 Cr. Hr.)

Lecture No	Topics	Suggested Reading	Corresponding CO(s)
01	Introduction to Open Channel Flow Course	Class lecture and Handout	
02	Concept of Open Channel Flow	Class lecture and Handout	CO1
03	Classification of Open Channel Flow	Class lecture and Handout	CO1
04	Basic equations for steady 1-D flow and their applications	Class lecture and Handout	CO2, CO4
05	Concept of uniform flow	Class lecture and Handout	CO3
06	Chezy and Manning equations, Estimation of resistance coefficients	Class lecture and Handout	CO3
	Quiz-1		
07	Computation of normal depth (analytical method)	Class lecture and Handout	CO2, CO3
08	Computation of normal depth (trial and error method)	Class lecture and Handout	CO2, CO3
09	Computation of normal depth (numerical method)	Class lecture and Handout	CO2, CO3
10	Computation of normal and critical slope	Class lecture and Handout	CO3
11	Composite roughness and compound cross-section	Class lecture and Handout	CO3
12	Computation of flood discharge by slope-area method	Class lecture and Handout	CO2, CO3
13	Theory and basic equations of Gradually Varied Flow	Class lecture and Handout	CO4
14	Characteristics and classification of gradually varied flow	Class lecture and Handout	CO4
15	Flow profiles in mild, critical and steep sloped channel	Class lecture and Handout	CO4, CO5
16	Flow profiles in adverse and horizontal sloped channel	Class lecture and Handout	CO4, CO5
17	Flow profiles in serial arrangements of channels	Class lecture and Handout	CO5
	Quiz-2		
18	Flow profiles in serial arrangements of channels (continued)	Class lecture and Handout	CO5
19	Computation of flow profiles in wide and horizontal channels by Direct Integration method	Class lecture and Handout	CO5
20	Computation of flow profiles by Direct Step method	Class lecture and Handout	CO5
21	Computation of flow profiles by Standard Step method	Class lecture and Handout	CO5

22	Computation of flow profiles by Standard Step	Class lecture and Handout	CO5
22	method (continued)		
23	Computation of flow profiles by Numerical method	Class lecture and Handout	CO5
24	Principles of flow measurement	Class lecture and Handout	CO6
25	Devices used for flow measurement	Class lecture and Handout	CO6
26	Course review	-	-

- Assessment 1. Class Attendance Class participation and attendance will be recorded in every class
   Strategy 2. Ouiz Ouiz may in the form of class test, assignment, presentation etc, which will be
  - 2. Quiz Quiz may in the form of class test, assignment, presentation etc, which will be declared at least one week before such assessment.
  - 3. Final Examination A comprehensive term final examination will be held at the end of the Term following the guideline of the Academic Council.

19. Distribution of Marks	 Class Participation Continuous Assessment Final Examination	10% 20% 70%
	Total	100%

## 20.73 Description of Course WRE 312

### Part-1: General Information

1.	Course Number	WRE 312
	<b>Course Title</b>	Open Channel Flow Sessional
	Credit/Contact Hours	1.50 (3.00 Hours/ Week)
2.	Level and Term Academic Term	Level-3, Term-2
3.	Type of Course	Departmental Core Sessional Course
4.	Pre-requisite Course(s)	N/A
5.	Course Website	
6.	Lecture Schedule	
7.	Important Dates	For important dates and examination schedules and latest updates, please follow the course website.
8.	Course Teachers	
0	Concultation	

9. Consultation Time

#### Part-2: Course Details

 10. Course Content (As approved by the Academic Council)
 11. Course Objectives
 Broad-crested weir; sluice gate; venturi flume; Parshall flume; cutthroat flume; hydraulic jump; velocity distribution profile; Manning's roughness coefficient; specific force and specific energy.
 The objective of the course is to acquaint the students with different flow measuring

devices, measurement techniques and their applications in open channels.

- 12. Student Learning 84 hours (Face-to-face 42 hours, Independent/group learning 42 hours) Time
  - 1. Principles of different flow measuring devices
    - 2. Applications to the field
- 14. Knowledge Required Basic theory of open channel flow.

#### 15. Course Outcomes

13. Transferable Skills

С	ourse Learning Outcome (CO)	Correspondin g Program Outcomes, PO(s) *	Domains and Taxonom y Level** Cognitive Domain (C)	Knowledge Profile (K)***	Complex problem solving (P)****	Complex Engineerin g activities (A)****	Delivery Method(s)	Assessment Tool(s)
CO- 1	Ability to <i>understand</i> the operating principles and usages of different flow measuring devices in open channels		C1, C2	K1, K3			Lectures, Tutorials, Experimental demonstratio n	Assignment , Quiz, Report, Viva
CO- 2	Ability to <i>estimate</i> different flow characteristics (force, energy and momentum) in open channels		C2, C5	К3			Lectures, Tutorials, Experimental demonstratio n	Assignment , Quiz, Report, Viva

#### *Programme Outcomes -PO (Outcomes of B.Sc. in Civil Engineering Degree)

Program Outcomes (POs) are narrower statements that describe what students are expected to know and be able to do by the time of graduation. These relate to the knowledge, skills and attitudes that students acquire while progressing through the program. The following are the program outcomes for the **B. Sc. in Civil Engineering** program:

**PO1-Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems in the field of water resources engineering and civil engineering.

**PO2-Problem analysis:** Identify, formulate, research and analyse complex engineering problems and reach substantiated conclusions using the principles of mathematics, the natural sciences and the engineering sciences.

**PO3-Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety and of cultural, societal and environmental concerns.

**PO4-Investigation:** Conduct investigations of complex problems, considering experimental design, data analysis and interpretation and information synthesis to provide valid conclusions.

**PO5-Modern tool usage:** Create, select and apply appropriate techniques, resources and modern engineering and IT tools, including prediction and modelling, to complex engineering activities with an understanding of their limitations.

**PO6-The engineer and society:** Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.

**PO7-Environment and sustainability:** Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.

**PO8-Ethics:** Apply ethical principles and commit to the professional ethics, responsibilities and the norms of the engineering practice.

**PO9-Individual work and teamwork:** Function effectively as an individual and as a member or leader of diverse teams and in multidisciplinary settings.

**PO10-Communication:** Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.

**PO11-Project management and finance:** Demonstrate knowledge and understanding of engineering and management principles and apply these to one's work as a team member or a leader to manage projects in multidisciplinary environments.

**PO12-Life-long learning:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the broadest context of technological change.

All twelve POs that are adopted for the civil engineering program are mandatory requirements as per the BAETE guideline. No additional PO is adopted for the program.

#### ****Cognitive domain (C)**

*The cognitive domain* (*C*) *and its Taxonomy Levels* (*1 to 6*) *aim to develop the mental skills and the acquisition of knowledge of the individual. The cognitive domain encompasses of six categories which include:* 

<b>C1</b> - knowledge/remember;	<b>C2</b> -understand/explain/estimate;	C3-apply;
C4-analysis;	C5-synthesis/design/create/construct;	<b>C6</b> -evaluate/judge/verify

#### ***Knowledge Profile (K)

K1	A systematic, theory-based understanding of the natural sciences applicable to the discipline		
K2	Conceptually based mathematics, numerical analysis, statistics and formal aspects of computer and information science to support analysis and modelling applicable to the discipline		
K3	A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline		
K4	<i>Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline</i>		
K5	Knowledge that supports engineering design in a practice area		
K6	Knowledge of engineering practice (technology) in the practice areas in the engineering discipline		
K7	Comprehension of the role of engineering in society and of the identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity in economic, social, cultural, environmental and sustainability terms		
K8	Engagement with selected knowledge in the research literature of the discipline		

#### ******Complex Problem Solving (P)**

	Attribute	Complex Problems
P1	Range of conflicting requirements	Involve wide-ranging or conflicting technical, engineering and other issues

P2	Depth of analysis required	Have no obvious solution and require abstract thinking and originality in analysis to formulate suitable models.
Р3	Depth of knowledge required	<i>Require research-based knowledge, much of which is at or informed by the forefront of the professional discipline, that allows a fundamental-based, first-principles analytical approach</i>
<i>P4</i>	Familiarity of issues	Involve infrequently encountered issues
P5	Extent of applicable codes	Are outside the problems encompassed by standards and codes of practice for professional engineering
P6	Extent of stakeholder involvement and level of conflicting requirements	Involve diverse groups of stakeholders with widely varying needs
<b>P</b> 7	Interdependence	Are high-level problems that include many component parts or sub-problems

## *****Complex Engineering Activities (A)

	Attribute	Complex Problems
A1	Range of resources	Involve the use of diverse resources (for this purpose, resources include people, money, equipment, materials, information and technologies)
A2	Level of interaction	Require the resolution of significant problems arising from interactions between wide- ranging or conflicting technical, engineering or other issues
A3	Innovation	Involve the creative use of engineering principles and research-based knowledge in novel ways
A4	Consequences for society and the environment	<i>Have significant consequences in a range of contexts, characterized by their difficulty of prediction and mitigation</i>
A5	Familiarity	Are outside the problems encompassed by standards and codes of practice for professional engineering

16. Text Book/Reference Reading Materials:

- 1. "Open Channel Hydraulics" by Ven Te Chow.
- 2. "Open Channel Hydraulics" by Richard H. French
- 3. "Lab Manual on Open Channel Hydraulics Sessional"
- 4. "Open Channel Flow" by F.M. Henderson
- 5. "Lecture Note on Open Channel Flow" by Dr. Md. Abdul Halim

## 17. Lecture Schedule

Week No	Topics	Suggested Reading	Corresponding CO(s)
01	Experiment 1: Determination of State of flow in Open Channel	Lab manual, Chow/Ch-1,4, French/Ch-1	CO1
02	Experiment 2: Flow Over a Broad Crested Weir	Lab manual, French/Ch-8, Franzini/Ch-12	CO1
03	Experiment 3: Flow Through a Venturi Flume	Lab manual, French/Ch-8	CO1
04	Experiment 4: Flow Through a Parshall Flume	Lab manual, French/Ch-8, Chow/Ch-4, Michael/Ch-4	CO1
05	Experiment 5: Flow Through a Cut- throat Flume	Lab manual, Michael/Ch-4	CO1
06	Experiment 6: Flow Beneath a Sluice Gate	Lab manual, Henderson/Ch-6	CO1
07	Viva		

08	Mid Quiz	-	-
09	Experiment 7: Hydraulic Jump	Lab manual, Chow/Ch-15	CO1, CO2
10	Experiment 8: Development of Generalized Specific Energy and Specific Force Curves	Lab manual, Chow/Ch-3	CO1, CO2
11	Experiment 9: Velocity Distribution Profile in Laboratory Flume	Lab manual, Chow/Ch-2,8	CO1, CO2
12	Experiment 10: Measurement of Discharge using Area- Velocity Method	Lab manual, Chow/Ch-2,8	CO1, CO2
13	Final Quiz	-	-
14	Viva, Submission of repot	-	-

## 18. Assessment 1. Class Participation – Class participation and attendance will be recorded in every class

- Strategy
- 2. Report-Students will submit report for each experiment.
- 3. Quiz Quiz will be in the form of written test.
- 4. Viva- Student will have to face a viva board at the end of the sessional course.
- 19. Distribution 1. Attendance and Class Participation-10%, 2. Class Work/Repot/Assignment-45%, 3. of Marks Quiz(s)-35%, 4. Viva-10%

## 20.74 Description of Course WRE 409

## Part-1: General Information

1.	Course Number	WRE 409
	Course Title	River Engineering
	Credit/Contact Hours	2.00
2.	Level and Term Academic Term	Level-4, Term-2
	Accudentie Term	
3.	Type of Course	
4.	Pre-requisite Course(s)	None
5.	Course Website	
	(Part-A)	
6.	Lecture Schedule	
7.	Important Dates	For important dates and examination schedules and latest updates, please follow the course website.
8.	Course Teachers	

9. Consultation Time

## Part-2: Course Details

10.	<b>Course Content</b> (As approved by the Academic Council)	Behaviour of alluvial rivers; River channel pattern and fluvial processes; bed forms and flow regimes; Aggradation and degradation; local scours; river training and bank protection works; Navigation and dredging; Sediment movement in river channels.
11.	Course Objectives	To acquaint the students with river morphology. This course will also teach them the functions and design of various river training and bank protection works.
12.	Student Learning Time	84 hours (Face-to-face – 28 hours, Independent/group learning – 56 hours)
13.	Transferable Skills	<ol> <li>Creative and critical thinking</li> <li>Problem solving skill, planning and design skill</li> </ol>
14.	Knowledge Required	Familiarity with Open Channel Hydraulics.

## 15. Course Outcomes

	Course Learning Outcome (CO)	Correspondin g Program Outcomes, PO(s) *	Domains and Taxonom y Level** Cognitive Domain (C)	Knowledge Profile (K)***	Complex problem solving (P)****	Complex Engineerin g activities (A)*****	Delivery Method(s)	Assessmen t Tool(s)
1	Ability to <i>explain</i> behaviour of alluvial rivers, fluvial processes and sediment transport mechanics.	PO-1	C1, C2	K1, K4	-	-	Lectures, Tutorials, Home works	Assignmen t, Quiz, Final exam
2	Ability to <i>describe</i> aggradation and degradation processes, navigation and dredging techniques.	PO-1	C1, C2	K1, K4	-	-	Lectures, Tutorials, Home works	Assignmen t, Quiz, Final exam
3	Ability to <i>design</i> various river training and bank protection works.	PO-1, PO-2, PO-3	C3, C4, C5	K4, K5	P2	-	Lectures, Tutorials, Home works	Assignmen t, Quiz, Final exam
4	Ability to <i>apply</i> scour formulae and <i>estimate</i> scour depth for hydraulic structures i.e. bridges.	PO-2, PO-3	C3, C4	K4, K5	P2	-	Lectures, Tutorials, Home works	Assignmen t, Quiz, Final exam

#### *Programme Outcomes -PO (Outcomes of B.Sc. in Civil Engineering degree)

**PO1- Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.

**PO2- Problem analysis:** Identify, formulate, research and analyse complex engineering problems and reach substantiated conclusions using the principles of mathematics, the natural sciences and the engineering sciences.

**PO3- Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety and of cultural, societal and environmental concerns.

**PO4- Investigation:** Conduct investigations of complex problems, considering experimental design, data analysis and interpretation and information synthesis to provide valid conclusions.

**PO5-** Modern tool usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools, including prediction and modelling, to complex engineering activities with an understanding of their limitations.

**PO6-** The engineer and society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.

**PO7- Environment and sustainability:** Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.

**PO8-Ethics:** Apply ethical principles and commit to the professional ethics, responsibilities and the norms of the engineering practice.

**PO9-** Individual work and teamwork: Function effectively as an individual and as a member or leader of diverse teams and in multidisciplinary settings.

**PO10-** Communication: Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.

**PO11- Project management and finance:** Demonstrate knowledge and understanding of engineering and management principles and apply these to one's work as a team member or a leader to manage projects in multidisciplinary environments.

**PO12- Life-long learning:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the broadest context of technological change.

All twelve POs that are adopted for the civil engineering program are mandatory requirements as per the BAETE guideline. No additional PO is adopted for the program.

#### ****Cognitive domain (C)**

*The cognitive domain (C) and its Taxonomy Levels (1 to 6) aim to develop the mental skills and the acquisition of knowledge of the individual. The cognitive domain encompasses of six categories which include:* 

<b>C1</b> - knowledge/remember;	C2-understand/explain/estimate;	C3-apply;
C4-analysis;	C5-synthesis/design/create/construct;	<b>C6</b> -evaluate/judge/verify

## ***Knowledge Profile (K)

K1	A systematic, theory-based understanding of the natural sciences applicable to the discipline			
K2	Conceptually based mathematics, numerical analysis, statistics and formal aspects of computer and information science to support analysis and modelling applicable to the discipline			
K3	A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline			
K4	<i>Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline</i>			
K5	Knowledge that supports engineering design in a practice area			
K6	Knowledge of engineering practice (technology) in the practice areas in the engineering discipline			
K7	Comprehension of the role of engineering in society and of the identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity in economic, social, cultural, environmental and sustainability terms			
K8	Engagement with selected knowledge in the research literature of the discipline			

## ****Complex Problem Solving (P)

	Attribute	Complex Problems		
P1	Range of conflicting requirements	Involve wide-ranging or conflicting technical, engineering and other issues		
P2	Depth of analysis required	lave no obvious solution and require abstract thinking and originality in analysis to ormulate suitable models.		
<i>P3</i>	Depth of knowledge required	<i>Require research-based knowledge, much of which is at or informed by the forefront</i> <i>f the professional discipline, that allows a fundamental-based, first-principles</i> <i>nalytical approach</i>		
<i>P4</i>	Familiarity of issues	Involve infrequently encountered issues		
P5	Extent of applicable codes	Are outside the problems encompassed by standards and codes of practice for professional engineering		
P6	Extent of stakeholder involvement and level of conflicting requirements	Involve diverse groups of stakeholders with widely varying needs		
<b>P</b> 7	Interdependence	Are high-level problems that include many component parts or sub-problems		

## *****Complex Engineering Activities (A)

	Attribute	Complex Problems
A1	Range of resources	Involve the use of diverse resources (for this purpose, resources include people, money, equipment, materials, information and technologies)
A2	Level of interaction	Require the resolution of significant problems arising from interactions between wide- ranging or conflicting technical, engineering or other issues
A3	Innovation	Involve the creative use of engineering principles and research-based knowledge in novel ways
A4	Consequences for society and the environment	<i>Have significant consequences in a range of contexts, characterized by their difficulty of prediction and mitigation</i>
A5	Familiarity	Are outside the problems encompassed by standards and codes of practice for professional engineering

#### 16. Text Book/Reference Reading Materials:

- 1. "Fluvial Processes in River Engineering" by Howard H. Chang
- 2. "Irrigation Engineering and Hydraulic Structures" by Santosh Kumar Garg
- 3. "River Geomorphology" by Edward J. Hickin
- 4. "Hydraulic Reference Manual of HEC-RAS" by US Army Corps of Engineers (Version 5.0, February 2016)
- 5. "River Mechanics" by Pierre Y. Julien
- 6. "River Engineering" by K.D. Gupta

## 17. Lecture Schedule (Part-A, 1.0 Cr. Hrs)

Week No	Topics	Suggested Reading	Corresponding CO(s)
01	Introduction to Rivers of Bangladesh and River Engineering	Handout	CO1
02	River Training and Bank Protection works	Handout	CO2
03	River Training and Bank Protection works	S.K. Garg/Ch-8	CO3
04	River Training and Bank Protection works	S.K. Garg/Ch-8	
05	Quiz 1	-	-
06	River Training and Bank Protection works	Handout	CO3
07	Sediment Movements in River Channel	H. Chang; Hickin	CO2
08	Sediment Movements in River Channel	H. Chang; Hickin	
09	Quiz 2	-	-
10	Local Scour	HEC-RAS Reference Manual, US Army	CO4
11	Local Scour	Handout	
12	Navigation and Dredging	Handout	CO2
13	Course Review	-	-

## Lecture Schedule (Part-B, 1.0 Cr. Hrs)

Lecture No	Topics	Suggested Reading	Corresponding CO(s)	
01	Introduction	Lecture material		
02	Behaviour of alluvial rivers	Chang/Ch-1		
03	Behaviour of alluvial rivers	Lecture material	CO1	
04	River channel pattern and fluvial processes	Chang/Ch-2		
05	River channel pattern and fluvial processes	Lecture material		
06	River channel pattern and fluvial processes	Chang/Ch-2		
07	Quiz-1	-	-	
08	Bed form and flow regimes	Chang/Ch-9		
09	Bed form and flow regimes	Lecture material	602	
10	Aggradation and degradation	Lecture material	CO2	
11	Aggradation and degradation	Lecture material		
12	Quiz-2	-	-	
13	Class Review	-	-	

### 18. Assessment Strategy

1. Class Attendance – Class participation and attendance will be recorded in every class

2. Quiz – Quiz may in the form of class test, assignment, presentation etc, which will be declared at least one week before such assessment.

- 3. Final Examination A comprehensive term final examination will be held at the end of the Term following the guideline of the Academic Council.
- **19. Distribution** 1. Class Participation-10%, 2. Quiz/CT/Assignments-20%, 3.Fnal Examination-70% of Marks

## 20.75 Description of Course WRE 411

## Part-1: General Information

1.	Course Number Course Title Credit/Contact Hours	WRE 411 Hydraulic Structures 2.00
2.	Level and Term Academic Term	Level-4, Term-2
3.	Type of Course	Required Course
4.	Pre-requisite Course(s)	None
5.	Course Website	
6.	Lecture Schedule	
7.	Important Dates	For important dates and examination schedules and latest updates, please follow the course website (Teams).
8.	Course Teachers	
9.	Consultation Time	
Par	rt-2: Course Details	
10.	<b>Course Content</b> (As approved by the Academic Council)	Principles of design of hydraulic structures; types of hydraulic structures; design of dams; design of barrages, weirs; design of spillways, energy dissipators and spillway gates; cross drainage works.
11.	Course Objectives	The objective of the course is to teach the students about the types, functions, planning and design principles of hydraulic structures.
12.	Student Learning Time	84 hours (Face-to-face – 28 hours, Independent/group learning – 56 hours)
13.	Transferable Skills	<ol> <li>Critical thinking.</li> <li>Problem solving skill, planning and design skill</li> </ol>
14.	Knowledge Required	Familiarity with hydraulics, hydrology, and analytical mechanics.

#### 15. Course Outcomes

Con	urse Learning Outcome (CO)	Correspo nding Program Outcome s, PO(s) *	Domains and Taxonomy Level** Cognitive Domain (C)	Knowl edge Profile (K)***	Comple x problem solving (P)****	Complex Engineeri ng activities (A)*****	Delivery Method(s)	Assessment Tool(s)
CO-1	Ability to <i>outline</i> the features, characteristics and functions of different types of hydraulic structures	PO-2	C1, C4	K1			Lectures, Tutorials, Home works	Assignment, Quiz, Final exam
CO-2	Ability to <i>explain</i> the basic principles of designing hydraulics structures		C2, C5, C6	K2			Lectures, Tutorials, Home works	Assignment, Quiz, Final exam
CO-3	Ability to <i>plan</i> the site of a dam reservoir	PO-3	C5	K2, K3	P1, P6	A2, A4	Lectures, Tutorials, Home works	Assignment, Quiz, Final exam
CO-4	Ability to <i>design</i> different types of hydraulic structures: barrage, weir, regulator, dam, spillway, cross-drainage works etc.	PO-1, PO-4,	C5	K4, K5, K6		A4	Lectures, Tutorials, Home works	Assignment, Quiz, Final exam

#### *Programme Outcomes -PO (Outcomes of B.Sc. in Civil Engineering degree)

- PO-1: **Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- PO-2: **Problem analysis:** Identify, formulate, research and analyse complex engineering problems and reach substantiated conclusions using the principles of mathematics, the natural sciences and the engineering sciences.
- PO-3: **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety and of cultural, societal and environmental concerns.
- PO-4: **Investigation:** Conduct investigations of complex problems, considering experimental design, data analysis and interpretation and information synthesis to provide valid conclusions.
- PO-5: **Modern tool usage:** Create, select and apply appropriate techniques, resources and modern engineering and IT tools, including prediction and modeling, to complex engineering activities with an understanding of their limitations.
- PO-6: **The engineer and society:** Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
- PO-7: Environment and sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.
- PO-8: Ethics: Apply ethical principles and commit to the professional ethics, responsibilities and the norms of the engineering practice.
- PO-9: **Individual work and teamwork:** Function effectively as an individual and as a member or leader of diverse teams and in multidisciplinary settings.
- PO-10: **Communication:** Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.

- PO- 11: **Project management and finance:** Demonstrate knowledge and understanding of engineering and management principles and apply these to one's work as a team member or a leader to manage projects in multidisciplinary environments.
- PO-12: Life-long learning: Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the broadest context of technological change.

#### ****Cognitive Domain (C)**

****The cognitive domain (C) and its Taxonomy Levels (1 to 6)** aim to develop the mental skills and the acquisition of knowledge of the individual. The cognitive domain encompasses of six categories which include:

C1- knowledge/remember;	C2-understand/explain/estimate;	C3-apply;
C4-analysis;	C5-synthesis/design/create/construct;	C6-evaluate/judge/verify

***Knowledge Profile (K) A systematic, theory-based understanding of the natural sciences applicable to the discipline K1 Conceptually based mathematics, numerical analysis, statistics and formal aspects of computer and K2 information science to support analysis and modelling applicable to the discipline K3 A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the K4 accepted practice areas in the engineering discipline; much is at the forefront of the discipline K5 Knowledge that supports engineering design in a practice area K6 Knowledge of engineering practice (technology) in the practice areas in the engineering discipline Comprehension of the role of engineering in society and of the identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of K7 engineering activity in economic, social, cultural, environmental and sustainability terms Engagement with selected knowledge in the research literature of the discipline **K**8 ****Complex Problem Solving (P) Attribute **Complex Problems** Range of conflicting **P1** Involve wide-ranging or conflicting technical, engineering and other issues requirements Depth of analysis Have no obvious solution and require abstract thinking and originality in analysis to **P2** required formulate suitable models. *Require research-based knowledge, much of which is at or informed by the forefront* Depth of knowledge **P3** of the professional discipline, that allows a fundamental-based, first-principles required analytical approach **P4** Familiarity of issues Involve infrequently encountered issues Extent of applicable Are outside the problems encompassed by standards and codes of practice for **P**5 codes professional engineering Extent of stakeholder involvement and level **P6** Involve diverse groups of stakeholders with widely varying needs of conflicting requirements **P**7 Interdependence Are high-level problems that include many component parts or sub-problems

*******Complex Engineering Activities (A)** 

	Attribute	Complex Problems
A1	Range of resources	Involve the use of diverse resources (for this purpose, resources include people, money, equipment, materials, information and technologies)
A2	Level of interaction	Require the resolution of significant problems arising from interactions between wide- ranging or conflicting technical, engineering or other issues
A3	Innovation	Involve the creative use of engineering principles and research-based knowledge in novel ways
A4	Consequences for society and the environment	<i>Have significant consequences in a range of contexts, characterized by their difficulty of prediction and mitigation</i>
A5	Familiarity	Are outside the problems encompassed by standards and codes of practice for professional engineering

# 16. Text Book/Reference Reading Materials:

1. "Irrigation Engineering and Hydraulic Structures", Author: Santosh Kumar Garg.

# 17. Lecture Schedule (Part-A, 1 Cr. Hrs)

Lecture No	Topics	Suggested Reading	Corresponding CO(s)
01	Introduction to Hydraulic Structures	Handout	CO1
02	Introduction to Dams.	Garg/Ch-17	CO1
03	Reservoirs and planning of Dam Reservoirs	Garg/Ch-18	CO2, CO3
04	Reservoirs and planning of Dam Reservoirs	Garg/Ch-18	CO2, CO3
05	Design and construction of gravity dam	Garg/Ch-19	
06	Design and construction of gravity dam	Garg/Ch-19	CO4
07	Design and construction of gravity dam	Garg/Ch-19	
08	Class Test-1		-
09	Design of spillways	Garg/Ch- 21	
10	Design of spillways	Garg/Ch- 21	CO4
11	Energy dissipators and spillway gates	Garg/Ch- 21	
12	Class Test-2		-
13	Course review	-	-

# Lecture Schedule (Part-B, 1 Cr. Hrs)

Lecture No	Topics	Suggested Reading	Corresponding CO(s)
01	Introduction to Hydraulic Structures of Bangladesh	Handout	CO1
02	Types of Hydraulic Structures	Handout	
03	Principles of design of hydraulic structures: Theories of Seepage	Garg/Ch-11	CO1, CO2
Theories of Seenage: Khosla's Theory (Problem		Garg/Ch-11	
05	Design of Modern Weirs Founded on Permeable Foundations on the basis of Khosla's Theory	Garg/Ch-11	CO4
06	Design of Modern Weirs Founded on Permeable Foundations on the basis of Khosla's Theory (Continued)	Garg/Ch-11	
07	QUIZ-1, Theories of Seepage and Design of Weirs	Garg/Ch-11	-
08	Design of Modern Barrages Founded on Permeable Foundations on the basis of Khosla's Theory	Garg/Ch-11	CO4

09	Design of Modern Barrages Founded on Permeable Foundations on the basis of Khosla's Theory (Continued)	Garg/Ch-11	
10	Introduction to Cross Drainage Works: Types and Features, Selection of a Suitable Type of Cross Drainage Work and Design Considerations	Garg/Ch-14	
11	Designing a Cross Drainage Work (Example Problem)	Garg/Ch-14	
12	QUIZ-2, Cross Drainage Works	Garg/Ch-14	
13	Course review	-	-

# Assessment Strategy Class Attendance – Class participation and attendance will be recorded in every class Quiz – Quiz may in the form of class test, assignment, presentation etc., which will be

- 2. Quiz Quiz may in the form of class test, assignment, presentation etc., which will be declared at least one week before such assessment.
  - 3. Final Examination A comprehensive term final examination will be held at the end of the Term following the guideline of the Academic Council.
- **19. Distribution** 1. Class Participation: 10%, 2. Quiz/CT/Assignments: 20%, 3. Final Examination: 70% of Marks

# 20.76 Description of Course WRE 412

# Part-1: General Information

1.	Course Number Course Title Credit/Contact Hours	WRE 412 Water Resources Engineering Sessional 1.50 (3 Hours/ Week)
2.	Level and Term Academic Term	Level-4, Term-2
3.	Type of Course	Required Course
4.	Pre-requisite Course(s)	None
5.	Course Website	
6.	Lecture Schedule	
7.	Important Dates	For important dates and examination schedules and latest updates, please follow the course website.
8.	Course Teachers	

9. Consultation Time

#### Part-2: Course Details

10.	<b>Course Content</b> (As approved by the Academic Council)	Design of hydraulic structures, river training works, Groundwater resource assessment and water well design.
11.	Course Objectives	To acquaint the students with different types of hydraulic structures and to teach them the hydrologic, hydraulic and structural design of a hydraulic structure.
12.	Student Learning Time	78 hours (Face-to-face – 39 hours, Independent/group learning – 39 hours)
	0	<ul> <li>78 hours (Face-to-face – 39 hours, Independent/group learning – 39 hours)</li> <li>1. Creative and critical thinking</li> </ul>
	Time	

#### 15. Course Outcomes

	Course Learning Outcome (CO)	Correspo nding Program Outcome s, PO(s) *	Domains and Taxonom y Level** Cognitiv e Domain (C)	Knowled ge profile (K)***	Complex problem solving (P)****	Complex Engineerin g activities (A)*****	Delivery Method(s)	Assessment Tool(s)
1	Ability to <i>outline</i> the features and types of hydraulic structures.	PO-1	C1	-	P1	-	Lectures, Tutorials, Homewor k	Assignment, Quiz, Final exam
2	Ability to <i>perform</i> hydrologic and hydraulic design of a hydraulic structure.	PO-2, PO-3, PO-4	C3, C4, C5	K2, K4	P2	-	Lectures, Tutorials, Homewor k	Assignment, Quiz, Final exam
3	Ability to <i>design</i> stilling basin and loose protection.	PO-2, PO-3, PO-4	C3, C4, C5	K2, K4	-	-	Lectures, Tutorials, Homewor k	Assignment, Quiz, Final exam.
4	Ability to <i>perform</i> structural design: box conduit, wing wall, apron and retaining wall.	PO-2, PO-3, PO-4	C3, C4, C5	K2, K4	-	-	Lectures, Tutorials, Homewor k	Assignment, Quiz, Final exam

_*Programme Outcomes -PO (Outcomes of B.Sc. in Civil Engineering degree)

PO-1: **Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.

- PO-2: **Problem analysis:** Identify, formulate, research and analyse complex engineering problems and reach substantiated conclusions using the principles of mathematics, the natural sciences and the engineering sciences.
- PO-3: **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety and of cultural, societal and environmental concerns.
- PO-4: **Investigation:** Conduct investigations of complex problems, considering experimental design, data analysis and interpretation and information synthesis to provide valid conclusions.
- PO-5: **Modern tool usage:** Create, select and apply appropriate techniques, resources and modern engineering and IT tools, including prediction and modeling, to complex engineering activities with an understanding of their limitations.
- PO-6: **The engineer and society:** Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
- PO-7: **Environment and sustainability:** Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.
- PO-8: Ethics: Apply ethical principles and commit to the professional ethics, responsibilities and the norms of the engineering practice.
- PO-9: **Individual work and teamwork:** Function effectively as an individual and as a member or leader of diverse teams and in multidisciplinary settings.
- PO-10: **Communication:** Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.
- PO- 11: **Project management and finance:** Demonstrate knowledge and understanding of engineering and management principles and apply these to one's work as a team member or a leader to manage projects in multidisciplinary environments.
- PO- 12: Life-long learning: Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the broadest context of technological change.

**Cognitive Domain** (C)

****The cognitive domain (C) and its Taxonomy Levels (1 to 6)** aim to develop the mental skills and the acquisition of knowledge of the individual. The cognitive domain encompasses of six categories which include:

C1- knowledge/remember;	C2-understand/explain/estimate;	C3-apply;
C4-analysis;	C5-synthesis/design/create/construct;	C6-evaluate/judge/verify

# ***Knowledge Profile (K)

-	
K1	A systematic, theory-based understanding of the natural sciences applicable to the discipline
K2	Conceptually based mathematics, numerical analysis, statistics and formal aspects of computer and information science to support analysis and modelling applicable to the discipline
<i>K3</i>	A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline
K4	Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline
K5	Knowledge that supports engineering design in a practice area
K6	Knowledge of engineering practice (technology) in the practice areas in the engineering discipline
K7	Comprehension of the role of engineering in society and of the identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity in economic, social, cultural, environmental and sustainability terms
K8	Engagement with selected knowledge in the research literature of the discipline

# ******Complex Problem Solving (P)**

	Attribute	Complex Problems		
P1	Range of conflicting requirements	Involve wide-ranging or conflicting technical, engineering and other issues		
P2	Depth of analysis required	Have no obvious solution and require abstract thinking and originality in analysis to ormulate suitable models.		
<i>P3</i>	Depth of knowledge required	<i>Require research-based knowledge, much of which is at or informed by the forefront of the professional discipline, that allows a fundamental-based, first-principles analytical approach</i>		
P4	Familiarity of issues	Involve infrequently encountered issues		
P5	Extent of applicable codes	Are outside the problems encompassed by standards and codes of practice for professional engineering		
P6	Extent of stakeholder involvement and level of conflicting requirements	Involve diverse groups of stakeholders with widely varying needs		
P7	Interdependence	Are high-level problems that include many component parts or sub-problems		

# *******Complex Engineering Activities (A)**

	Attribute	Complex Problems
A1	Range of resources	Involve the use of diverse resources (for this purpose, resources include people, money, equipment, materials, information and technologies)
A2	Level of interaction	Require the resolution of significant problems arising from interactions between wide- ranging or conflicting technical, engineering or other issues
A3	Innovation	Involve the creative use of engineering principles and research-based knowledge in novel ways
A4	Consequences for society and the environment	<i>Have significant consequences in a range of contexts, characterized by their difficulty of prediction and mitigation</i>

	Attribute	Complex Problems	
A5	Familiarity	Are outside the problems encompassed by standards and codes of practice for professional engineering	

# 16. Text Book/Reference Reading Materials:

1. "Irrigation Engineering and Hydraulic Structures", Author: Santosh Kumar Garg.

#### 17. Lecture Schedule (3 Hours/ Week)

Lecture No	Topics	Suggested Reading	Corresponding CO(s)
01	Introduction to Hydraulic Structures	Garg/Handout	CO1
02	Hydrologic Design of a regulator: Generation of a hydrograph.	Garg/Handout	
03	Hydrologic Design of a regulator: Flood Routing by Goodrich Method.	Garg/Handout	CO2
04	Hydraulic Design of a regulator: Determination of floor thickness (pre monsoon and post monsoon)	Garg/Handout	
05	Design of stilling basin parameters and loose protection.	Garg/Handout	CO3
06	MID TERM QUIZ	-	-
07	Structural Design of box conduit	Handout	
08	Structural Design of wing wall	Handout	
09	Structural Design of apron	Handout	CO4
10	Structural Design of retaining wall	Handout	]
11	Structural Design review	Handout	
12	FINAL QUIZ	-	-
13	Course review	-	-

- 18. Assessment 1. Class Attendance - Class participation and attendance will be recorded in every class
  - Strategy
- 2. Daily Assessment-Daily Assessment may be in the form of laboratory performance, report writing and submission, short class test, VIVA etc.
- 3. Mid Quiz and Final Quiz Two comprehensive written examinations which will be declared at least one week before occurrence.
- 19. Distribution 1. Class Participation: 10%, of Marks
  - 2. Daily Assessment: 40%,
    - 3. Quiz: 50%

# 20.77 Description of Course WRE 451

#### Part-1: General Information

1.	Course Number Course Title Credit/Contact Hours	WRE 451 Hydrology, Irrigation and Flood Management 3.00
2.	Level and Term Academic Term	
3.	Type of Course	Required Course
	Offered to	Civil Engineering Department
4.	Pre-requisite Course(s)	None
5.	Course Website	
	(Section -B)	
6.	Lecture Schedule (Online)	
7.	Important Dates	For important dates and examination schedules and latest updates, please follow the course website.

# 8. Course Teachers

#### Part-2: Course Details

9. Course Content (As approved by the Academic Council) Hydrologic cycle; Weather and Hydrology; Precipitation, Evaporation and transpiration; Infiltration. Stream flow; Application of telemetry and remote sensing in hydrologic data acquisition; Rainfall-runoff relations; Hydrographs, unit hydrographs; Hydrologic routing; Statistical methods in hydrology; Introduction and Overview of irrigation; Water Law of Bangladesh; Plant-soil-water relationship; Consumptive use and estimation of irrigation water requirements; Methods of irrigation; Quality of irrigation water; Problems of irrigated land; Flood and its management

(Bold topics will be covered in Part-B)

# **10. Course Objectives** • To enable the student to understand the hydrologic process considering the complex interactions among precipitation, evaporation, transpiration and infiltration at any watershed scale.

- To be able to understand rainfall-runoff relationships, hydrographs and their analyses techniques.
- To be able to estimate irrigation requirements based on plant soil relationship, and consumptive use of crops.
- To understand the issues of irrigation field considering type of irrigation and quality of irrigation water.
- To be able to understand the floods and its managements in the context of Bangladesh.

# 11. Knowledge Required Fundamental understanding of Physics, Fluid Mechanics and Open Channel Flow.

#### 12. Course Outcome

	Course Learning Outcome (CO)	Correspo nding Program Outcome s, PO(s) *	Domains and Taxonom y level(s)** Cognitiv e Domain (C)	Knowl edge Profile (K)***	Complex problem solving (P)****	Complex Engineerin g activities (A)*****	Delivery Method(s) and Activity (ies)	Assessment Tool(s)
1	Ability to <b>explain</b> and <b>apply</b> fundamental concepts, techniques, and engineering knowledge used in hydrology, irrigation and food management	PO-1 PO-2	C1, C4	K1, K3	P2, P3, P6	A2, A3	Lectures, Tutorials, Home works	Assignment, Quiz, Final exam
2	Explain the physical processes involved in the hydrologic process and analyse the components of water budget for a catchment.	PO-1 PO-2 PO-3 PO-12	C2, C4, C5, C6	K3, K4, K5	P2, P3	A3	Lectures, Tutorials, Home works	Assignment, Quiz, Final exam
3	Ability to <b>develop</b> and <b>analyse</b> hydrographs for project design.	PO-2 PO-3 PO-12	C4, C6	K4, K5	Р3	А3	Lectures, Tutorials, Home works	Assignment, Quiz, Final exam
4	Ability to <b>explain</b> the plant water relationship and <b>estimate</b> consumptive use for irrigation requirements.	PO-1 PO-2 PO-3 PO-12	C2, C5, C6	K1, K3	P2, P3	A2, A3	Lectures, Tutorials, Home works	Assignment, Quiz, Final exam
5	Apply engineering knowledge and social aspect for determining irrigation methods and flood managements.	PO-1 PO-2 PO-3	C3, C4, C5	K3, K5, K6	P3, P6	A2, A3	Lectures, Tutorials, Home works	Assignment, Quiz, Final exam

# *Programme Outcomes -PO (Outcomes of B.Sc. in Water Resources Engineering degree)

- * PO-1: **Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- PO-2: **Problem analysis:** Identify, formulate, research and analyze complex engineering problems and reach substantiated conclusions using the principles of mathematics, the natural sciences and the engineering sciences.
- PO-3: **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety and of cultural, societal and environmental concerns.
- PO-4: **Investigation:** Conduct investigations of complex problems, considering experimental design, data analysis and interpretation and information synthesis to provide valid conclusions.
- PO-5: **Modern tool usage:** Create, select and apply appropriate techniques, resources and modern engineering and IT tools, including prediction and modeling, to complex engineering activities with an understanding of their limitations.
- PO-6: **The engineer and society:** Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
- PO-7: Environment and sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.
- PO-8: **Ethics:** Apply ethical principles and commit to the professional ethics, responsibilities and the norms of the engineering practice.
- PO-9: **Individual work and teamwork:** Function effectively as an individual and as a member or leader of diverse teams and in multidisciplinary settings.
- PO-10: **Communication:** Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.
- PO- 11: **Project management and finance:** Demonstrate knowledge and understanding of engineering and management principles and apply these to one's work as a team member or a leader to manage projects in multidisciplinary environments.
- PO- 12: Life-long learning: Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the broadest context of technological change.

#### Cognitive domain (C)

****The cognitive domain (C) and its Taxonomy Levels (1 to 6)** aim to develop the mental skills and the acquisition of knowledge of the individual. The cognitive domain encompasses of six categories which include:

	C1- knowledge/remember;	C2-understand / explain / estimate;	C3-apply;
	C4-analysis; C5-synthesis/design/create/construct;		C6-evaluate/judge/verify
***Knc	owledge Profile (K)		
K1	A systematic, theory-based un	nderstanding of the natural sciences applicab	le to the discipline
K2	· ·	natics, numerical analysis, statistics and realistics and realistics and realistics and modelling applicable to the di	
<i>K3</i>	A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline		
K4	Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline		
K5	Knowledge that supports eng	ineering design in a practice area	
K6	Knowledge of engineering practice (technology) in the practice areas in the engineering discipline		

		Comprehension of the role of engineering in society and of the identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity in economic, social, cultural, environmental and sustainability terms
Ī	K8	Engagement with selected knowledge in the research literature of the discipline

# ****Complex Problem Solving (P)

	Attribute	Complex Problems	
<i>P1</i>	Range of conflicting requirements	Involve wide-ranging or conflicting technical, engineering and other issues	
P2	Depth of analysis required	Have no obvious solution and require abstract thinking and originality in analysis to formulate suitable models.	
P3	Depth of knowledge required	<b>Require research-based knowledge</b> , much of which is at or informed by the forefront of the professional discipline, that allows a fundamental-based, first-principles analytical approach	
<b>P</b> 4	Familiarity of issue	Involve infrequently encountered issues	
P5	Extent of applicable codes	Are outside the problems encompassed by standards and codes of practice for professional engineering	
P6	Extent of stakeholde involvement and lev of conflicting requirements		
<b>P</b> 7	Interdependence	Are high-level problems that include many component parts or sub-problems	
*****	Complex Engineer	ng Activities (A)	
	Attribute	Complex Problems	
A1	Range of resources	Involve the use of diverse resources (for this purpose, resources include people, money, equipment, materials, information and technologies)	
A2	Level of interaction	Require the resolution of significant problems arising from interactions between wide- ranging or conflicting technical, engineering or other issues	
A3	Innovation	Involve the creative use of engineering principles and research-based knowledge in novel ways	
A4	Consequences for society and the environment	Have significant consequences in a range of contexts, characterized by their difficulty of prediction and mitigation	
A5	Familiarity	Are outside the problems encompassed by standards and codes of practice for professional engineering	
3. A	Assessment Strategy	<ul> <li>Class Participation: Class participation and attendance will be recorded in every class.</li> <li>Continuous Assessment: Continuous assessment any of the activities such as quizzes, assignment, presentation, etc. The scheme of the continuous assessment for the course will be declared on the first day of classes.</li> <li>Final Examination: A comprehensive term final examination will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at the scheme of the course will be held at</li></ul>	

• Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

14.	Distribution of	Class Participation	10%
	Marks	Continuous Assessment	20%
WILLES	Final Examination	70%	
		Total	100%
		TOTAL	100

#### 15. Text Book/Referenssce Reading Materials:

- Irrigation Engineering & Hydraulic Structures: S. K. Garg
   Fundamentals of Irrigation and On-farm Water Management Volume 1 &2, by M. H. Ali
   Irrigation (Theory & Practice): A. M. Micheal (2nd Edition)
- 4. Irrigation Principles and Practices: Vaughn E. Hansen & W. Israelsen
- 5. Material Provided by the Instructor
- 6. Engineering Hydrology by Subramanya, K. Tata- McGraw Hill Publishing Company LTD
- 7. Applied Hydrology by V. T. Chow, David R. Maidment and Larry W. Mays. McGraw Hill Education 16. Lecture Schedule

# Section-A, 1.5 Cr. Hrs

Lecture No	Topics	Suggested Reading	Corresponding CO(s)
01	Introduction to Hydrology and Engineering Hydrology; Practical Applications of Hydrology	Handout; Subramanya Ch- 1; Chow Ch-1	CO-1
02	Hydrologic Cycle; Residence Time	Handout; Chow Ch-1	CO-1, CO-2
03	Vapor Pressure and Saturation Vapor Pressure; Relative Humidity and Specific Humidity; Dew Point Temperature	Handout; Chow Ch-3	CO-1, CO-2
04	Formation of Precipitation; Forms of Precipitation	Handout; Subramanya Ch- 2; Chow Ch-3	CO-2
05	Class Test 1		
06	Computation of Average Rainfall	Handout; Chow Ch-3	CO-1, CO-3
07	Evaporation and Transpiration	Handout; Chow Ch-3	CO-2, CO-3
08	Infiltration	Handout; Subramanya Ch- 3; Chow Ch-3	CO-2
09	Stream Flow Measurements	Handout; Subramanya Ch- 4	CO-1, CO-3
10	Application of Telemetry and Remote Sensing in Hydrologic Data Acquisition	Handout	CO-1, CO-3
11	Definition of Runoff; Runoff Characteristics of Streams	Handout; Chow Ch-5	CO-3
12	Estimation of Yield; Rational Method	Handout; Subramanya Ch- 7; Chow Ch-14	CO-3
13	Elements of Flood Hydrograph; Methods of Base Flow Separation; Effective Rainfall and Direct Runoff	Handout; Subramanya Ch- 6	CO-3
14	Class Test 2		
15	Use of Unit Hydrograph for Simple and Complex Storm Events	Handout; Subramanya Ch- 6	CO-3
16	Unit Hydrograph of Different Durations	Handout; Subramanya Ch- 6	CO-3
17	Concept of Flood Routing; Hydrologic Channel Routing	Handout; Subramanya Ch- 8; Chow Ch-8	CO-1, CO-3
18	Hydrologic Storage Routing	Handout; Subramanya Ch- 8; Chow Ch-8	CO-1
19	Concept of Flood Frequency Studies; Gumbel Method	Handout; Subramanya Ch- 7	CO-1, CO-2, CO-3
20	Numerical and Graphical Flood Frequency Analyses	Handout; Subramanya Ch- 7	CO-3

# Section-B, 1.5 Cr. Hrs

Lecture No	Topics	Suggested Reading	Corresponding CO(s)
01	Introduction and Overview, Water Law of Bangladesh	Handout	CO1
02	Importance of irrigation	Handout, Garg Ch-1, Ali Ch-1,2	CO1
03	Plant-Soil-Water relationship	Handout, Garg Ch-2, Ali Ch-8	CO4
04	Plant-Soil-Water relationship	Handout, Garg Ch-2, Ali Ch-8	CO4
05	Plant-Soil-Water relationship	Handout, Garg Ch-2, Ali Ch-8	CO4
06	Class Test 1		-
07	Consumptive use & estimation of irrigation water requirements	Handout, Garg Ch-2, Ali Ch-8, 9	CO1, CO4
08	Consumptive use & estimation of irrigation water requirements	Handout, Garg Ch-2, Ali Ch-8,9	CO1, CO4
09	Consumptive use & estimation of irrigation water requirements	Handout, Garg Ch-2, Ali Ch-8,9	CO1, CO4
10	Methods of irrigation	Handout, Garg Ch-1, Ali Vol-2 Ch-2	CO1, CO5
11	Methods of irrigation	Handout, Garg Ch-1, Ali Vol-2 Ch-2	CO1, CO5
12	Methods of irrigation	Handout, Garg Ch-1, Ali Vol-2 Ch-2	CO1, CO5
13	Sources and quality of irrigation water	Handout, Garg Ch-1	CO1, CO5
14	Sources and quality of irrigation water	Handout, Garg Ch-1	CO1, CO5
15	Sources and quality of irrigation water	Handout, Garg Ch-1	CO1, CO5
16	Class Test 2		-
17	Problems of irrigation land	Handout, Ali Vol-2 Ch-7	CO1, CO5
18	Problems of irrigation land	Handout, Ali Vol-2 Ch-7	CO1, CO5
19	Problems of irrigation land	Handout, Ali Vol-2 Ch-7	CO1, CO5
20	Flood and its management	Handout	CO5
21	Flood and its management	Handout	CO5

# Annex A: Definition of terms

Term	Definition
PEO	Program Educational Objectives
РО	Program Outcomes
CGPA	Cumulative Grade Point Average
СО	Course Outcome
CE	Civil Engineering
OBE	Outcome Based Education
COs	Course Outcomes
Ph.D	Doctor of Philosophy
OBA	Outcome-Based Accreditation

# **Annex B: List of program outcomes**

The teaching methods in the department revolve around the program outcome set by the department. The department follows the following program outcomes for its undergraduate programs:

**PO1-Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.

**PO2-Problem analysis:** Identify, formulate, research and analyze complex engineering problems and reach substantiated conclusions using the principles of mathematics, the natural sciences and the engineering sciences.

**PO3- Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety and of cultural, societal and environmental concerns.

**PO4- Investigation:** Conduct investigations of complex problems, considering experimental design, data analysis and interpretation and information synthesis to provide valid conclusions.

**PO5-Modern tool usage**: Create, select and apply appropriate techniques, resources and modern engineering and IT tools, including prediction and modeling, to complex engineering activities with an understanding of their limitations.

**PO6-The engineer and society:** Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.

**PO7-Environment and sustainability:** Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.

**PO8-Ethics:** Apply ethical principles and commit to the professional ethics, responsibilities and the norms of the engineering practice.

**PO9-Individual work and teamwork:** Function effectively as an individual and as a member or leader of diverse teams and in multidisciplinary settings.

**PO10-** Communication: Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.

**PO11-Project management and finance:** Demonstrate knowledge and understanding of engineering and management principles and apply these to one's work as a team member or a leader to manage projects in multidisciplinary environments.

**PO12-Life-long learning:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the broadest context of technological change.

Taxonomy	Level
С	Cognitive
C1	Knowledge
C2	Comprehension
C3	Application
C4	Analysis
C5	Synthesis
C6	Evaluation
Α	Affective
A1	Receiving
A2	Responding
A3	Valuing
A4	Organizing
A5	Characterizing
Р	Psychomotor
P1	Perception
P2	Set
P3	Guided Response
P4	Mechanism
P5	Complex Overt Response
P6	Adaptation
P7	Organization

**Annex C: Domains and Taxonomy Levels** 

# Annex D: Format of the Course Outline 1.1 Description of Course ABC 111

# Section A: General Information

1.1.1 Course Title	Insert your course title here
1.1.2 Type of Course	Insert course type (Core/Optional/Session/Non-departmental)
1.1.3 Offered to	Insert the name of the Department
1.1.4 Pre-requisite Course(s)	Insert course numbers if applicable

# **Section B: Course Details**

1.1.5 Course Content (As approved by the Academic Council)

- Insert course content here
- 1.1.6 Course Objectives
  - Objective 1
  - Objective 2
- 1.1.7 Knowledge required

Insert previous knowledge requirements

#### 1.1.8 Course Outcomes

CO	CO Statement	Corresponding	Domains	and	Delivery	Method(s)	Assessment
No.		PO(s)*	Taxonomy		and Activity(-ies)		Tool(s)
			level(s)**				
1	CO1 statement	e.g., PO(a)	e.g., C2		e.g., Homework	Lectures,	e.g.,Written exams; viva voce; presentation; assignment
2	CO2 statement						
3	CO3 statement						
4	CO4 statement						
5	CO5 statement						

# 1.1.9 Lecture Plan

	Class No.	Topics	References	Corresponding CO(s)
1				
2				
3				
42				

1.1.10 Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment: Continuous assessment any of the activities such as quizzes, assignment, presentation, etc. The scheme of the continuous assessment for the course will be declared on the first day of classes.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

# 1.1.11 Distribution of Marks

Class Participation	10%					
Continuous Assessment	20%					
Final Examination	70%					
Total	100%					
12 Textbook/References						

1.1.12 Textbook/References

1. Reference 1

2. Reference 2